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Abstract

In my thesis, I investigate human semi-supervised learning (SSL), the ability to learn sim-

ultaneously from labelled and unlabelled data with high efficiency. I argue that the majority of

earlier results of human SSL in the literature are straightforward if one assumes that learners

adopt a generative learning method when acquiring new categories. Since generative learn-

ing means creating a representation of the entire outside world, under natural conditions, this

amounts to building rich models based on all the incoming information, which is, by definition

has to be a mixture of labelled and unlabelled data. Therefore, I propose that research on SSL

should not focus on the typically investigated question of whether humans can integrate super-

vised and unsupervised information, since they evidently can. Rather, the focus of investigation

on SSL should be on the question of how this integration occurs, namely the behavioral and

neural specifics of the interaction between learning from labelled and non-labelled data during

the course of knowledge acquisition.

Following my proposal, I present three studies relevant to the field of human category learn-

ing. First, I present evidence for automatic generative learning in humans. I show that irre-

spective of the task at hand and the relevance of the incoming information to solving that task,

humans automatically build a generative internal model of the data, even when a much simpler

discriminative model would suffice for completing the task perfectly.

In the second study, I investigate whether performing first unsupervised then supervised

learning or vice versa during a categorization task makes a difference in learning. The majority

of SSL categorization studies in the field investigated the influence of unsupervised informa-

tion on a category representation that had been built earlier based on supervised information.
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However, all these studies used different stimuli, different procedures, and different set of parti-

cipants so their conclusions are hard to incorporate into one comprehensive framework. There

exist no earlier study in the literature addressing the question whether there is any qualitative

difference between the emerging representations of SSL depending on the order of training.

Characterizing this aspect of the integration process is the first step towards a comprehensive

understanding of human SSL.

Finally, in the third study, I investigate the neural correlates of the process by which in-

ternal representation of novel categories in the cortex emerge. I analyze the changes of com-

monly studied neural correlates (P300 ERP, α ERD and θ ERS) of categorization throughout

the process of category acquisition. Previous studies addressing these neural correlates lack two

important characteristics of human categorization. First, they used highly familiar categories,

thus no information was gained about the dynamics of particular neural responses as categor-

ies emerged. Second, the commonly used stimuli of these studies were few and highly dis-

crete. This hinders understanding how the structure of the stimulus modulates neural responses.

Eliminating these shortcomings by using unfamiliar categories and continuously changing fea-

ture sets, I show that commonly studied neural correlates have the potential of reflecting the

ongoing emergence of the internal representation, and in addition, they are modulated by the

difficulty of the task, and the strength of category membership.
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Chapter 1

Introduction

We continuously interpret and characterize incoming sensory information and this process is

augmented by abstract latent mental constructs represented in our brain and variably referred

to as schemes, scripts, categories, concepts or objects. These conceptual constructs evolve in

time due to experience in the current sensory and social contexts and they perpetually bias our

perception (Gauthier, James, Curby and M.J.Tarr, 2003; Goldstone, 1994; Goldstone, Lippaa

and Shiffrin, 2001; Op de Beeck, Wagemans and Vogels, 2003), information processing, and ul-

timately our interpretation and interaction with our environment, in other words, our cognition

(Canini, Shashkov and Griffiths, 2010; Canini and Griffiths, 2011; Heller, Sanborn and Chater,

2009; Taylor, Devereux, Acres, Randall and Tyler, 2012; Harnad, 2005). Categorization, the

action of separating and grouping information based on some similarity measurement and relev-

ance is a central constituent of this process. As a consequence, understanding the mechanisms

underlying categorization and the acquisition of categories is crucial for understanding human

cognition.

Object categorization has been argued to occur at multiple levels. Bornstein (1984) defined
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four types of categorization. The simplest form is identity categorization that allows one to

recognize the same object presented multiple times as such across a series of many other ob-

jects. The second is recognition equivalence categorization that enables one to identify the same

object even when it is presented with multiple variations in appearance (rotation, modality or di-

mensionality). The third is perceptual equivalence categorization, possibly the most commonly

investigated form of categorization in cognitive sciences, also, the main focus of the present

thesis, which describes grouping of objects that are physically distinct, but share qualitatively

similar attributes. Finally, conceptual categorization requires additional knowledge about the

objects beyond their perceptual appearance, for example their function or the role they play in

different events, to be grouped together.

There are many aspects of perceptual categorization and category learning processes that

influence the efficiency of learning and the resulting representation, an internal model of com-

ponents and structure of our environment. Such aspects can be sorted into two groups based

on whether they define the quantity and nature of potentially incoming information (external),

or if they are attributes of the emerging representation on the receiving end (internal). Ex-

amples of the former group are the number of (relevant) stimulus dimensions and their relation

to one another (single or multiple dimensions (Ashby and Maddox, 2011; Ashby and Valentin,

2017), integral or separable stimulus dimensions (Shepard, 1991; Nosofsky and Palmeri, 1996;

Maddox and Dodd, 2003)), the presence and type or absence of feedback during acquisition (su-

pervised or unsupervised learning), or the distribution of stimuli in relation to the task (whether

the stimulus distribution is suggestive of the category boundary (Ell and Ashby, 2006)). As-

pects concerning internal processes of the learner are for instance the learning strategy and the

structure of the resulting representation (generative or discriminative learning (Hsu and Grif-
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fiths, 2010)) or the conscious accessibility and content of the acquired knowledge (implicit or

explicit learning) (Sun, Zhang, Slusarz and Mathews, 2007; Ziori and Dienes, 2012).

To acquire a reliable and exhaustive model of human category acquisition, experimental

studies have systematically addressed the role and influence of the above mentioned (mostly ex-

ternal) factors and their effect on one another. These studies utilized various perceptual modalit-

ies (visual, auditory (Goudbeek, Smits, Cutler and Swingley, 2005; Liu, Montes-Lourido, Wang

and Sadagopan, 2019), haptic (Gaißert, Waterkamp, Fleming and Bülthoff, 2012; Schwarzer,

Küfer and Wilkening, 1999), olfactory (Locatelli, Fernandez and Smith, 2016)), a wide range of

stimulus complexity (from one dimensional (Hsu and Griffiths, 2010), through 2-3D simple ob-

jects (Markant and Gureckis, 2014) to natural scenes (Li, VanRullen, Koch and Perona, 2002))

and a great variety of features of supervision over the learning process (delay (Maddox, Ashby

and Bohil, 2003; Stephens and Kalish, 2018), valence (Ashby and O’Brien, 2007), presence or

absence of feedback or the use of labels (Ashby, Maddox and Bohil, 2002)).

One particular aspect of categorization, the presence or absence of feedback during cat-

egory acquisition allows to address two crucial research questions. By adding feedback to the

learning process, the capacity and dynamics of human category learning can be investigated.

Forming categories in the absence of feedback allows us to see how the unbiased human brain

structures incoming information naturally. Although both of these learning types are extremely

important, neither of them is realistic in isolation in the light of how natural category forma-

tion occurs most of the time in real life. For example, at early age, when children learn about

their environment, most of the observation about surrounding objects left unlabelled, that is the

learning is unsupervised. However, on some occasions, children do receive labels or corrective

feedback when they encounter novel objects in their environment. This begs the question: How
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much generalizable are the results of current studies obtained by strictly supervised or strictly

unsupervised experimental setups to processes during natural category acquisition?

Intuitively, the learning framework that would best match natural human category acquis-

ition by integrating supervised and unsupervised learning is the method that is called in the

machine learning literature semi-supervised learning (SSL). Despite of a wide consensus in the

field that SSL is the most ecologically relevant form of human category learning, there are sur-

prisingly few empirical studies addressing any aspects of SSL. In addition, as reviewed below,

the usefulness of the existing results is questionable. In the rest of the chapter, I will discuss the

most important findings both in supervised and unsupervised learning, and critically review the

literature on human semi-supervised learning. I will continue by discussing the most relevant

findings on the debate of discriminative vs. generative learning in humans. I will argue in favor

of generative models as the proper conceptualization of human category learning, and suggest

that findings in the literature on SSL are explainable in a completely straightforward manner if

one supposes that humans build generative models of their environment.

1.1 Supervised, unsupervised and semi-supervised learning

1.1.1 Supervised learning

Supervised learning in the context of category learning refers to the condition when the learner

receives information about the group membership with each incoming piece of information or

each stimulus. Most of the experiments conducted in human categorization research use this

condition (Gureckis and Love, 2003a). Supervised learning methods have been proposed hav-

ing virtually no limits with respect to what task they can teach to humans (Pothos, Edwards and
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Perlman, 2011). It has also been argued by Goudbeek et al. (2005) that, in the visual domain,

humans are unable to learn category structures requiring the integration of multiple stimulus

dimensions (i.e. non-trivial categorization rules) without supervision. Supervised experimental

procedures differ widely from one another with respect to the valence, type and timing of su-

pervision.

The most typical type of supervision is corrective feedback following and evaluating the cat-

egory decision. In some studies, only error signals (negative feedback) are provided, while in

others setups correct decisions also get acknowledged (positive feedback). Many studies repor-

ted that negative feedback facilitated learning more in experimental setups, where participants

had to learn a simple, explicit categorization rule that was easy to verbalize (rule-based (RB)

learning (Ashby and Maddox, 2011)). However, Ashby and O’Brien (2007) found that the com-

bination of both positive and negative feedback outperformed the conditions where only either

positive or negative feedback was used in more complex tasks that required implicit integra-

tion of two stimulus dimensions simultaneously at a pre-decisional stage. For example, such

advantage was found in tasks where calculation of a weighted linear combination of the two

relevant dimensions was necessary (Ashby and Gott, 1988). This method is called information-

integration (II) category learning (Ashby and Maddox, 2011)). This result was later challenged

by findings of Freedberg, Glass, Filoteo, Hazeltine and Maddox (2017) arguing that only negat-

ive feedback was necessary for successful learning. Integrating these previous results, a viable

conclusion is that negative feedback is a necessary, but in some cases not sufficient for achieving

the best performance when teaching categories in a supervised manner.

Apart from feedback, providing labels of categories with each stimulus are another form of

supervision. Labels commonly either precede the stimulus or presented simultaneously with it.
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Learning environments where the learner receives feedback after category decisions is called

feedback learning, while procedures involving the presentation of labels are examples of ob-

servational learning. As Ashby, Maddox and Bohil (2002) showed, RB and II learning benefit

more from different types of supervision. While RB is usually easy enough to be learned with

virtually no supervision, the type of feedback does not modulate learning performance signific-

antly. Type II learning, however, benefits most from feedback learning. An even more interest-

ing difference between these types of supervision is that observational learning is supposed to

encourage generative learning (see Section 1.2), by allowing the learner to pay more attention

to the distribution of the stimuli, while feedback learning restricts the attention of the learner

more to the discrimination rule between the categories, as a result it promotes discriminative

learning (Levering and Kurtz, 2015).

A major drawback of purely supervised learning is that it appears to be preventing efficient

generalization of the acquired category knowledge to novel stimuli (Jones, Love and Maddox,

2005; Patterson and Kurtz, 2018). Ideally, learners should be able to extend (generalize) the

knowledge to new potential members of a category they are familiar with. It would be extremely

inefficient and costly if we stood puzzled in front of an object with four legs, a seat and a back,

if it had an unusual size, color or material than the chairs we got used to in the past. In addition,

supervised learning is not very feasible with its assumption that one needs the help in the form

of feedback from a knowledgeable other to clarify the hunch that the perceived object is a

chair. Unsupervised learning, however, seem to be able to give rise to a more useful category

representation, at least considering generalization of category information.
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1.1.2 Unsupervised learning

Unsupervised learning has been explored considerably more exhaustively in machine learning

(Hinton and Sejnowski, 1999). With respect to humans, their ability for unsupervised category

learning seems to be very limited. Research on unsupervised learning asks an essentially dif-

ferent question than research on supervised learning. While supervised learning can explore

the nature and limits of human learning capacity by pushing data and task complexity to ex-

tremes, or by manipulating different features of the learning environment, unsupervised learn-

ing is rather concerned with how categories and structured representations are naturally formed

by humans, what the principles driving such information processing are (Pothos and Chater,

2002).

Typical unsupervised classification experiments require participants to group incoming stim-

uli without providing any constraints or guidance as to how this classification should happen.

The number and content of the emerging groups created by participants reflect the natural, auto-

matic processes that guide information processing in humans (Barlow, 1989; Austerweil and

Griffiths, 2009). To further refine our knowledge on these processes, researchers can introduce

a few constraints (such as predefined number of possible groups) or manipulate features of the

incoming data or the learning environment. Such manipulations might affect the mode of stim-

ulus presentation (simultaneous or sequential) or the number and type of stimulus dimensions

(single or multi-dimensional stimuli or integral or separable feature dimensions). For instance,

simultaneously presented data lead to similar classification solutions irrespective of the scatter

and spatial location of the stimuli, while the order of sequentially presented stimuli has a strong

effect on the classification strategy (Zeithamova and Maddox, 2009). Also, the relation of stim-

ulus dimensions influence the learner’s propensity to take into account more than one stimulus
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dimension when they create categories. Integral dimensions are suggested to be processed hol-

istically and are difficult to attend selectively to each dimension, while separable-dimension

stimuli are processed analytically and are easy to attend selectively to these dimensions (Mad-

dox and Dodd, 2003). If stimulus dimensions are highly separable, people tend to exhibit a

so-called unidimensional bias where they rely on only one feature dimension to create a classi-

fication rule (Ashby, Alfonso-Reese, Turken and Waldron, 1998; Ashby, Queller and Berretty,

1999; Ashby and Maddox, 2011; Maddox, Ashby and Pickering, 2004; Vandist, De Schryver

and Rosseel, 2009). With integral dimension stimuli learners are more inclined to rely on a

combination of two dimensions when creating categories (Handel and Imai, 1972). This effect

is supported by studies form the supervised learning literature (Nosofsky and Palmeri, 1996).

Under unconstrained unsupervised learning, seemingly, there can be no wrong solutions to

a categorization problem, since forming categories strongly depends on the internal interpret-

ation of the input. Nevertheless, it is an understandable expectation that the emerging internal

representation of the stimuli should somehow match or reflect the distribution of external data.

Such a matching is often used as the requirement for optimality of unsupervised categorization,

especially in contexts, where the learner is expected to utilize the obtained knowledge in future

interactions with her environment (Love, 2002; Love, 2003; Gureckis and Love, 2003a; Gurec-

kis and Love, 2003b). In this sense, even without having access to the internal encoding of the

input, there are, indeed, better and worse solutions to the classification problem.

The general agreement is that, in an unsupervised categorization context, observers’ per-

formance is optimal only if the categorization task is easy, so that the category clusters are

strongly suggestive about where the boundary is. If the task is difficult, for instance it requires

integration of two separable feature dimensions, the unidimensional bias will prevail, and the
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learners will select one dimension and categorize consistently along that dimension (Ashby,

Queller and Berretty, 1999). However, it is beyond doubts that focusing on the structure of the

input exclusively by neglecting the effects of the internal representation even in unsupervised

settings is incorrect, as there are many implicitly applied constraints and priors originating from

the internal representation that will influence learning (Goldstone, Lippaa and Shiffrin, 2001;

Gregory, 1997; Mitchell, Ropar, Ackroyd and Rajendran, 2005).

1.1.3 Semi-supervised learning

Semi-supervised learning (SSL) is the form of category learning that combines both supervised

and unsupervised information throughout the learning process. Although, in the machine learn-

ing literature, there is a vast amount of research addressing the computational aspects of SSL

(Zhu, 2005), only a handful of studies tried to explore SSL in humans. The very first human

study, which simply aimed at establishing the phenomenon in humans was published only in

2007 (Zhu, Rogers, Qian and Kalish, 2007). Unfortunately, the currently existing literature on

SSL is far from being systematic and contains often contradictory results. In the following sec-

tion, I review and critically evaluate this literature.

The effect of unsupervised trials on representations obtained by previous supervised learning

The earliest studies of SSL focused on the role and impact of unsupervised information in cat-

egory learning (Zhu, Rogers, Qian and Kalish, 2007; Vandist, De Schryver and Rosseel, 2009;

Kalish, Rogers, Lang and Zhu, 2011; Lake and McClelland, 2011; McDonnell, Jew and Gurec-

kis, 2012; Kalish, Zhu and Rogers, 2015). Typical experiments presented learners with a few

uniformly distributed supervised (feedback) stimuli from two categories defined along one rel-
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evant feature dimension. (See Fig. 1.1 for examples) Learners are assumed to infer the category

boundary at the geometrical mid point between the presented supervised stimuli. This super-

vised learning phase is followed by an unsupervised one, where the learners receive a large

number of additional stimuli in an unsupervised manner. Crucially, the distribution of unsuper-

vised stimuli suggest a category boundary that is shifted with respect to the one implied in the

supervised training phase. A commonly sought hallmark of SSL in these studies is the change

in the representation of the categories, that is signalled by the shifted category boundary as a

result of additional unsupervised information (Zhu et al., 2007; Kalish et al., 2011; McDonnell,

Jew and Gureckis, 2012; Gibson et al., 2015; Kalish, Zhu and Rogers, 2015). A major flaw in

the earliest studies (Zhu et al., 2007; Lake and McClelland, 2011; Kalish et al., 2011) as pointed

out by McDonnell, Jew and Gureckis (2012) is that, as a result of the one dimensional categor-

ization and the indefinite range of stimulus values, it is unclear whether learners are updating

each category representation separately or they respond to a possible global shift in the stimulus

space. Somewhat stronger evidence for SSL was provided by McDonnell, Jew and Gureckis

(2012) and Kalish, Zhu and Rogers (2015). McDonnell, Jew and Gureckis (2012) taught parti-

cipants two categories defined in a two-dimensional (line length and orientation) stimulus space

in a supervised training setup. The distribution of the supervised stimuli was equally compatible

with two distinct, orthogonal category boundaries along one or the other stimulus dimension.

It was the distribution of additional unsupervised stimuli that decided which category boundary

is the correct one that best matched the data. Kalish, Zhu and Rogers (2015) designed a study

where stimuli that were established to belong to one category in the supervised training phase

as a result of unsupervised information switched categories and were categorized reliably as

belonging to the other category after the unsupervised phase of the study. Such a change in
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categorization behavior signals a much more radical update in the internal representation of the

learners than a mere shift in the stimulus space. However, these results are almost trivial if one

accepts that human learners try to incorporate all available incoming information during learn-

ing irrespective of their relevance to the task or the manner of presentation. Such a learning

behavior is called generative learning (briefly mentioned by Gibson, Rogers, Kalish and Zhu

(2015)), and it is discussed later in this chapter. In Chapter 2, I will argue that humans, indeed,

adopt automatically a generative learning strategy when receiving any new information.

Figure 1.1: Examples of stimuli used in early SSL experiments.

The effect of supervised trials on representations obtained by previous unsupervised learning

While early studies focused on the effect of unsupervised information, Vong, Navarro and Per-

fors (2015) addressed the usefulness of supervised trials. Not surprisingly, they found that

supervision is the most beneficial when unsupervised information is ambiguous and does not

lead to an obvious solution to the categorization problem. As opposed to previous studies, they

presented all the stimuli simultaneously (not sequentially) to the learners, which makes it diffi-

cult to interpret their results in the framework of previous studies, where sequential effects also

11



biased the emerging internal representation (Jones, Love and Maddox, 2006). Apart from the

distribution of the unsupervised stimuli, the timing of supervised information might also have a

strong impact on learning. Infants, for instance, were only able to learn two categories of novel

creatures when supervised information preceded unsupervised ones, or if all of the stimuli were

labeled (LaTourrette and Waxman, 2018).

Gibson et al. (2015) were the first to address the question whether the learners’ behavior

observed in previous SSL studies was, indeed, explainable only by assuming the integration

of supervised and unsupervised information (i.e. SSL), or participants used much less sophist-

icated heuristics that could result in the same outcome. Fitting different models that assumed

SSL or a range of other, much simpler heuristics to human data, they found that, indeed, humans

utilized both supervised and unsupervised information when learning about categories in a SSL

setup.

The superiority of SSL

After confirming humans’ capacity to perform SSL, more recent studies started to focus on

different aspects of the learning situation rather than on the basic question of whether humans

integrate both supervised and unsupervised information. A hidden premise of these studies is

that SSL is superior to both supervised and unsupervised learning. According to this reasoning,

if SSL is the most natural form of human category learning, it is expected that the brain is best

accommodated to handle information received in a semi-supervised fashion. Consequently,

SSL should outperform (i.e. allow for a more accurate internal representation of the incoming

information) both strictly unsupervised or supervised learning.

Based on pure reasoning about the unidimensional bias that exist in humans, it is feasible
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that the supervised trials could lead to a superiority of SSL over purely unsupervised learning

if the category to be acquired is not in line with the learner’s internal unidimensional bias.

In this case, supervised trials can guide the learner to identify the correct category boundary,

while unsupervised trials can allow them to build a more refined representation of the stimulus

distribution. However, superiority of SSL in the other condition, is less trivial: Why would

unsupervised learning in SSL help to better performance over a purely supervised scenario?

As mentioned in Section 1.1.1, a potential benefit of SSL over supervised learning might be

a more efficient generalization of category knowledge, as supervised learning often impairs

generalization. Indeed, Patterson and Kurtz (2018) conducted a study with relational categories

and found that, in the SSL condition with unsupervised stimuli that were highly similar to

supervised ones, categorization performance for novel stimuli from the learned categories was

the best in SSL. In this sense, SSL outperformed supervised learning.

However, Vandist, De Schryver and Rosseel (2009) failed to show the superiority of SSL

over supervised learning in their study. They taught participants categories defined on two di-

mensions (orientation and frequency of Gabor patches) that required integration of information

across dimensions, and varied the number of the added supervised trials (0, 25, 50 or 100%).

The results showed no difference in the 25% from the 0% (unsupervised learning) condition,

nor between the 50% and the 100% (supervised learning) conditions. Corresponding learning

curves and overall accuracy were statistically the same. However, 25% supervision was too

little to achieve good performance on such a difficult task, while on the other hand, 50% was

enough for participants to learn the categories by the end of the experiment, as it is confirmed

from Exp.2. of the study. As a result, the unsupervised trials were no different from redundant

filler trials. Moreover, in contrast to previous studies, in this study, supervised and unsupervised
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trials were sampled from the same distribution of stimuli implying the same category boundary,

so it is hard to quantify the effect of SSL.

In a different study, Vandist, Storms and Bussche (2019) found evidence of facilitated auto-

maticity, defined by the duration of RT in trials, in the SSL condition over the supervised learn-

ing condition. They used the same stimuli as in their previous study (Vandist, De Schryver

and Rosseel, 2009), and reported more substantial shortening of RTs in the semi-supervised

condition compared to the supervised one.

Even though, these studies represent the first steps along an important but so far neglected

line of research, they have a couple of shortcomings. First, these studies are very much scattered

in terms of the phenomena they address and they do not propose a solid theoretical basis for the

mechanisms of SSL. Without a strong common framework, these results have little explanatory

power and represent just interesting findings rather than strong building blocks of an emerging

model of human SSL. Second, as mentioned above, the two main conclusions of earlier studies

are relatively self-evident for two reasons. First, the fact that SSL is the most natural form of

learning strongly suggests that humans should be capable of integrating supervised and unsu-

pervised information while learning about categories in their environment. Second, the finding

that this integration of supervised and unsupervised information relies on the learner’s capacity

to learn about the distribution of the stimuli in an unsupervised manner is also expected. An

efficient learner should try to retrieve as much information of the incoming stimulation as pos-

sible so that the knowledge gained shall be rich, flexible and applicable in other situations as

well.
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However, there is one important consequence of the finding of the existing SSL studies.

If humans, indeed, try to learn about as many aspects of the incoming information as they

can (including physical and statistical features as well) to have a rich and flexible knowledge,

this requires retrieving and storing statistical and distributional information not only about the

strictest discriminating features for the categories but also about auxiliary charateristics of the

input. Moreover, any update of the category representation and the implied boundary between

categories should also adjusts the relations of these auxiliary charateristics accordingly. Such a

way of learning is reminiscent to generative learning as opposed to discriminative learning, and

this provides a clearly testable hypothesis: do humans learn in a generative of discriminative

manner? In order to investigate this question, first in the following section, I review these two

learning methods and their relevance to human category learning.

1.2 Generative and Discriminative learning

Similarly to SSL, the characteristics and distinction between generative and discriminative

learning has been widely studied in the field of machine learning (ML) (e.g Ng and Jordan

(2001)), while it received much less attention in human research (Hsu and Griffiths, 2010).

There are fundamental differences between the representations the two methods allow for.

Generally speaking, a discriminative learner will only focus on aspects of the input that are

crucially important and relevant for solving the task at hand. A generative learner on the other

hand will try to learn and represent as much of the incoming information as the system possibly

can given the list of all potential tasks in the future. The two approaches can be demonstrated

via a simple example. Let’s say our task is to learn to learn to sort a set of images of dogs and

birds into two groups (categorize them) according to species. The discriminative approach will
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focus merely on the differences between the two animal groups (e.g. number of legs (2/4), coat

(feather/hair), presence of beak (yes/no), position of eyes (side/front)). The generative learner

will learn all available information on birds and dogs (size, color, habitat, frequency of different

feature values, etc.). By the end of the learning process both learners will be able to solve the

categorization task properly. Of course, asymptotically, the discriminative approach will need

less training data and will be more precise in categorizing well defined classes.

However, an important additional consequence becomes evident if we take our example a

step further. Suppose, we get a second task, where we need to select typical examples of the

two species. Our generative model will have no problem, since it has learned everything about

the two species, including the distribution of features and feature values, so it will be able to tell

typical exemplars from rare or extreme ones. The discriminative model however will fail to do

anything with our second task as so far it only focused on whether a feature value (e.g. feather

as coat) is present or not on an image to solve the first task.

In more formal terms, our first, categorization task in the above example is to estimate to

probability of a given animal (a) belonging to a species (s) by trying to learn the distribution

p(s∣a). A generative model estimates the distribution of the animals in each species, so by the

end of the learning process it will be able to approximate the probability of an animal given

each of the species, p(a∣s). It calculates which species is more probable given an example

animal (p(s∣a)) using the Bayes’ rule: p(a∣s)p(s)
p(a) (Hsu and Griffiths, 2009; Hsu and Griffiths,

2010). In contrast, the discriminative model does not learn anything about the distribution of

the species. It will try to estimate the probability of a species given an exemplar of the species

at hand directly. Such an estimation can be done effectively by identifying a few discriminating

features that can serve as an abstract boundary between the species (Hsu and Griffiths, 2009;
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Hsu and Griffiths, 2010) .

Considering the second task, since the generative model knows about the probability of

certain features in each species, making decisions about typicality (high probability) will mean

no problem, since in terms of probabilities, non-typical members of the species will have an

extremely low probability in any of the species. Lacking knowledge of the feature distributions,

the discirminative learner will need to start the learning process anew focusing now on typicality

trying to define a boundary between typical and non-typical members in both species.

This explanation can be easily transformed into a description of any sort of categorization

task if we change every occurrence of animal to object (x) and of species to category (Ci).

In these terms, a generative model learns the feature distribution of the stimuli, whereas the

discriminative learner will simply map each stimulus to a category without knowing anything

about the within-category structure of the stimuli. One particular problem widely explored

in perceptual experiments that favours the use of generative models is testing the influence of

category variability on categorization behavior (Hsu and Griffiths, 2010; Behbahani and Faisal,

2012). Since a generative model focuses on the distribution of the categories, it will have access

to statistical properties describing the categories for instance the mean and the variance of the

features. In contrast, this higher-order information is lost or at least it is strongly distorted in a

discriminative representation (Figure 1.2).
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Figure 1.2: Representation of the same stimulus distributions by a generative (left) and a
discriminative (right) learner (Bishop, 2006).

From a ML perspective, discriminative models are usually favored since their asymptotic

error is lower than that of a generative model, and thus on the long run, a discriminative learner

would outperform a generative one (Ng and Jordan, 2001). This is rational if the goal is to

design a machine algorithms that is reliable and makes as few mistakes as possible at the limit.

However, an important benefit of the generative learner is that initially it outperforms a dis-

criminative learner, since at the beginning of the learning process, a generative learner utilizes

initial sparse information better than a discriminative learner. Also, as mentioned before, gen-

erative methods end up with a much more flexible knowledge, and a the generative model will

perform much better on novel tasks. Considering the typical domains of categorization in ma-

chine learning (e.g. images, texts, mail) and the usual conditions of learning (batch processing,

data availability), it is not surprising that discriminative learners are more widespread since in

these problems, learners typically face a single task, there is a large amount of data available

for training, and the long-term performance of the algorithm is crucial (Lasserre, Bishop and

Minka, 2006).

However, the question naturally rises whether discriminative models would be the most
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appropriate to capture human behavior as well. A discriminative learner is precise and economic

in terms of required memory capacity – since it only aims at representing the category boundary

– while a generative model allows for a much flexible knowledge and is able to utilize well only

a few initial samples. Considering the paramount importance of not requiring hundreds of

images of tables and chairs before reliable discrimination between them, a generative model

of human learning seems much more plausible. It is equally important that we do not start a

learning process from the beginning once we face a new task requiring us to handle the already

acquired categories slightly differently. Taking into account these advantages of a generative

learner, it would seem logical that humans are adapted to build generative models of incoming

information that will provide representation flexibly and efficient adaptation to different tasks

and circumstances.

Unfortunately, there exist only a few studies addressing this question of discriminative vs.

generative models being adequate for humans and even these studies are contradicting. In

Chapter 2, I review these studies in detail and present a new study that strongly supports the

idea that humans use generative learning.

1.3 The goals of the thesis

In this Introduction, I have briefly reviewed the literature of human learning along two important

axes of characterization, labelled as the un/supervised and the generative-discriminative distinc-

tion. In the next three chapters, I will present three studies that furthers our understanding of

human learning along these axes.

In Chapter 2, I address the question whether learners automatically adopt a generative ap-

proach to process incoming information. Are implicit categories defined by the distribution of
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the data represented internally even if the task does not require one to build such categories? Do

these categories also emerge if the learner is prompted to build a much simpler, discriminative

representation of the data?

Since my findings in Chapter 2 firmly support the view that learners indeed, automatically

build generative internal representations of incoming information, in Chapter 3, I will focus

on the question how human SSL research integrates supervised and unsupervised data while

generative learning of categories occurs. Is there a difference whether the same supervised

information arrives before or after the unsupervised information? How does supervised data in-

fluence the representation built by receiving only unsupervised data, and the other way around?

Will supervised information also be integrated into the final representation, or will it overwrite

the internal representation built based on unsupervised information? Do learners truly update

their representation of learned categories as a result of additional supervised or unsupervised

information, even when this update requires them to assign samples to the opposite category at

the end of the learning process?

Finally, in Chapter 4, I will investigate the cortical neural correlates of emerging categories

during generative category learning. I measure the nature of the emerging neural responses

typically associated to the process of categorization as learning of categories progresses. I ask

whether and how these neural responses are modulated by the strength of category-membership

of the stimulus or the difficulty of the task.
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Chapter 2

Evidence for automatic generative

learning in humans

2.1 Introduction

In section 1.2, I reviewed the topic of generative and discriminative learning in machines and

humans, and argued that generative learning would be more favorable for humans because of

their efficiency in early stages of learning and the plasticity of the resulting representation later

under new circumstances. Unfortunately, there are only a few empirical studies directly ad-

dressing the issue of generative vs. discriminative learning in humans. This is surprising given

that the existing studies represent two lines of thoughts that argue for opposing views on how

humans learn. Below, I will present and critically evaluate these studies.

Next, I will present my study with a design that specifically addressed the problems I found

in the previous studies, and with the results of my study, I provide further evidence in favor

of generative learning in humans. Using my paradigm, I show that humans implicitly and
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automatically adopt generative learning methods, even if the task is easy enough to prompt a

simpler, discriminative approach.

2.1.1 Evidence for a selective use of both models

In two papers, Hsu and Griffith argued for a selective use of generative and discriminative mod-

els by humans under different conditions (Hsu and Griffiths, 2009; Hsu and Griffiths, 2010).

According to their claim, it is highly context-dependent whether humans adopt one or the other

learning strategy. In their 2010 paper, they found that even when the stimuli were the same in

two between-subjects conditions, learners adopted either generative or discriminative strategies

for learning the categories, and their choice strongly depended on how the learning scenario

was framed by the cover story they received before the experiment. In one of the experimental

conditions, participants were told that they needed to learn alien signs from two tribes by ob-

serving the signs shown by a representative from each alien tribe. This setup was claimed to

prompt generative learning, since the task of learning the signs of two distinct tribes from in-

tentionally generated (and possibly highly representative) samples of the categories resonates

strongly with the generative concept of learning stimulus distributions separately for each cat-

egory. Meanwhile, in the discriminative condition, participants were told that the stimuli would

not be generated by tribe representatives, but there would be an interpreter alien telling where

each sign belongs to.

Crucially, one of the non-overlapping categories had higher variability than the other. (Fig. 2.1)

As explained above, such a difference in withing-category distributions will only be accounted

for and represented in a generative model that has access to higher-order statistical informa-

tion about the distribution of the category features. If a learner adopts a generative approach
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learning about the categories, such a difference between feature variability will affect how the

category boundary is defined by the learner: it will be shifted towards the category with less

stimulus variability, allowing for a wider range of stimulus features to be represented in the

more variable category. However, such a difference will not affect learners’ representations in

the discriminative condition, the boundary will be placed equal distance from both categories.

(Fig. 2.1)

The results of the study confirmed the authors’ prediction: in the condition, where the cover

story prompted discriminative learning, participants categorized previously unseen stimuli ac-

cording to a rule that used a category boundary exactly midway between the two categories. In

the condition suggesting generative learning, the boundary was markedly shifted by participants

towards the less variable category compared to the boundary defined in the discriminative con-

dition.

Figure 2.1: Left: Training and transfer stimuli from the experiment of Hsu & Griffiths (2010)
Right: Modeled categorization pattern of the transfer stimuli in the two conditions of the same
experiment.

Shortcomings of the experimental design and reasoning of the study

Design flaws

In spite of the clear setup and the seemingly straightforward interpretation of the results, the
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conclusion of Hsu and Griffiths (2010) is questionable. First, it was not only the cover story that

differed in the two experimental conditions. In addition, both the order of stimulus presentation

and the adherent labels were slightly modified across the two setups creating a more observation

learning-like scenario in the generative condition, and a more feedback-learning type scenario

in the discriminative setup. These two kinds of training are known to prompt generative and

discriminative learning, respectively (Levering and Kurtz, 2015).

Second, it is not entirely clear what these prompts correspond to in a natural setup or why

would it be beneficial for the learner to lose information about the distribution of the data due to

such a minimal change between the learning scenarios. It is also unclear whether this contextual

alteration is the only type of information that makes humans switching between generative and

discriminative learning, or there is a deeper and broader driving force, of which this manipula-

tion is only one indicator.

Finally, even after following the design of the experiment very carefully, I failed to replicate

the results in the original, counterbalanced or slightly modified setups. As a minimum, this

indicates the very brittle nature of the reported observation.

No distinction between different representations vs. different use of the same representation

More importantly, and apart from the flaws in the design, there is a purely theoretical prob-

lem that weakens Hsu and Griffiths’ argument for a selective adoption of the learning strategies.

As discussed in Section 1.2, a generative model is capable of retrieving all the information con-

tained in a discriminative model. Therefore, a generative representation, if required, can be used

for solving a task while showing the hallmarks of either generative or discriminative learning.

This of course does not hold the other way around: in general, a discriminative representation
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cannot generate features of a generative learning. Unfortunately, in Hsu and Griffiths’ experi-

ment, there is no clear distinction between two alternative explanations of the shifting boundary

result: an observer cannot be sure whether the results show the typical use of the two different

representations or the representation remains the same generative one (containing information

about withing-category distribution) across the two cases, but it was used differently in the two

tasks.

Considering this issue, it is worth remembering that even if a discriminative model requires

much less memory space for storing the acquired knowledge, it seems to be a modest gain for

a disproportionately huge price of being forced to learn about the same concepts and same dis-

tributions again and again whenever we face a new task. Given this fact, and without additional

strong argument about why and how discriminative learning would be more beneficial, it seems

more parsimonious to suppose that humans always build generative models of the environment,

and use this rich generative representation differently depending on the task at hand.

2.1.2 Evidence for generative representations under all circumstances

Similar considerations led Behbahani and Faisal (2012) to test what humans’ natural approach

to learning is when they are not prompted to adopt either of the learning strategies. In their

experiment, they made participants learn to categorize stimuli from two categories that were

defined by two non-overlapping unimodal Gaussian distributions with different means, but same

variance in the feature space. The category boundary lied between the Gaussians, at an equal

distance from the two category means. After participants reliably learned the categories, there

was a second test round, in which participants received an enlarged set of stimuli consisting

of the originals, and an additional group of outlier stimuli added to one of the two categor-
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ies. This addition increased the variance of the category that included the outliers. Behbahani

and Faisal (2012) found that participants’ subjective category boundary shifted towards the cat-

egory with the smaller variance. This happened despite the fact that the categorization task

at the second test round could have been perfectly solved by the originally learned boundary,

which still allowed for correctly deciding whether a category element fell to the left or the right

of the category boundary, irrespective of the additional information about the summary statist-

ics (like variance) of the data. Such a re-coding of internal representations in the light of new

information is a hallmark of generative learning.

Figure 2.2: Stimulus distribution of experiments by Behbahani and Faisal (2012). The upper
figure shows the training data, the lower the second round of training with outliers as well as
the shifted category boundary as a result of generative learning.

Shortcomings of the experimental design of the study

Inseparability of data and task

Behbahani and Faisal (2012) replicated their results in many different setups with various

stimulus sets. However, they always used stimuli with a single relevant feature dimension and
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virtually no other information in the test stimuli. This raises the question whether the generative

characteristic of the learning process is, indeed, because humans always learn generatively or

because in this task and stimulus design, it is inevitable that the observer will learn "everything"

about the stimulus set even though it tries to learn just a restricted task, the boundary between

the categories. In other words, due to the extreme simplicity of both the task and the stimuli, it

is impossible to disentangle learning about the task and learning about the stimuli in this study.

The evidence for automatic generative learning would have been far more convincing if parti-

cipants had learned the distribution of the stimuli even when both the feature and its distribution

were perfectly irrelevant for solving the task.

In summary, based on the literature, it seems that although humans do show the hallmarks

of both generative and discriminative learning in various conditions, there are no studies con-

vincingly clarifying two fundamental issues of human learning:

• whether humans, indeed, build substantially different representations in different learning

situations and not just simply use the same representation differently depending on the

context

• whether humans build a (n approximately) full generative model of the environment irre-

spective of the number and nature of task-relevant feature dimensions.

2.2 Methods and logic of the design

In my study, I searched for evidence supporting automatic context-, task- and stimulus-independent

generative learning in humans. To overcome the previously discussed design flaws, I designed
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two experiments and a baseline experiment along three goals (outlined below) and tailored my

stimuli, task and procedure to achieve those goals. In the following sections, I introduce the

three goals and, in parallel, I discuss which aspect of the studies were designed to fulfill the

given goals.

2.2.1 Automaticity

As the first goal, the study should demonstrate that the learning strategy humans adopt is auto-

matic, so it is not prompted by the nature of the task and/or the distribution of the data. For

this, the task should not rely strongly on the distribution of the tested stimulus feature, rather it

should be concerned with the information readily available from another feature of the presen-

ted stimulus. This provides a method to avoid the problem in the study by Behbahani and Faisal

(2012). Estimating the distribution of a particular feature (e.g. color, size, angle) and its sum-

mary statistics (e.g. mean or SD) are tasks that do not require any information from the other

features or statistics, and they are readily computable at the current trial, thus there is no need

for attention – not to mention representation – of the distributions of other features. In addition,

obtaining a representation of summary statistics of e.g. circle ensembles are proven to be a fast,

automatic and precise process, and humans are generally good at them without external inform-

ation beyond what is presently available in the trial (Chong and Treisman, 2003; Chong and

Treisman, 2005; Alvarez and Oliva, 2009; Alvarez, 2011). As a result, any knowledge about

the distribution of the irrelevant aspect of the data is a result of an implicit, automatic learning

process irrespective of the task or the task’s relationship to the stimulus distribution.
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Stimuli

To fulfill this requirement, I designed my stimuli and task so that automatic emergence of a

generative model could be demonstrated.

In all of the experiments in this study, stimuli were ensembles of 2, 4, 5, 6, 8 or 10 circles

of varying sizes (radii) that were sampled from a unimodal truncated Gaussian with mean and

SD distributed uniformly in a given range (Fig. 2.3).

All experiments had two conditions depending on the task. In one condition, participants

had to estimate the mean of the circle sizes in the ensemble (Mean estimation condition), in the

other condition, the task was to estimate the standard deviation of the circle sizes (SD estimation

condition). A previous pilot indicated that both tasks were easy to perform, and mean estim-

ation was extremely easy for participants. Therefore, mean circle sizes were varying between

16-78 pixels for the SD estimation condition and between 32-62 pixels for the Mean-estimation

conditions to make the tasks more balanced and a bit more challenging to the participants. The

possible SDs of the ensembles in both conditions ranged from 0 to 13 pixels.
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Figure 2.3: Example of the distribution of the joint summary statistics space of mean and SD
values used at the Baseline experiment, and four examples of actual stimulus display sampled
from different parts of the distribution.

2.2.2 Distinguishability

As the second goal, distribution of the stimuli should allow a clear discrimination between

generative and discriminative representations. Changing the variance of one category in a cat-

egorization task can be a good candidate, but as argued before, when the stimuli vary along one

feature dimension, it is difficult (if not impossible) to detach the representations of stimuli and

task, and as a result of this, the chance to prove automaticity gets lost. The solution is to intro-

duce a second, task-irrelevant stimulus dimension, as it only gets accounted for in a generative

representation. If the task requires one to attend to only one feature dimension, a discriminative

learner will ignore all other feature dimensions if they are irrelevant for solving the task. On

the other hand, a generative representation contains information about more than just the most

important dimension.
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Data distribution

In the Baseline experiment, the distributions were the same, uniformly covering the whole para-

meter space (Fig. 2.4A).

To test for automaticity, first, in Experiment 1 and 2, two implicit categories were formed

in the data in two different ways: either small mean value/small SD and large mean value/large

SD defined the two classes, or vice versa, the classes were small mean value/large SD vs. large

mean value/small SD (Fig. 2.4D,E). Note that for any one of the parameters (mean or SD),

these distributions were uniform, only their joint distribution showed the category structure.

Second, for measuring internal representations, I relied on a well-documented phenomenon,

the automatically emerging internal biases that naturally accompany category representations.

Specifically, I used the bias called regression towards the mean, the phenomenon when per-

ceived features of stimuli near the category boundary are distorted in a way to be more similar

to the mean of the category (de Haan and Nelson, 1998). Finally, I defined the task of the ob-

server based only on one of the two available features (mean or SD), and I looked for behavioral

biases emerging as a result of learning depending on the other feature. An emergence of such

a "regression towards the mean" bias would be a hallmark of generative learning, as it would

imply that learners’ incorporated information about the task-irrelevant stimulus dimension, and

the joint distribution of both feature dimensions allowed for the formation of categories in the

internal representation of learners.

In the Mean estimation condition, categories in the data were formed in a way that en-

sembles with small mean also had small SD, while ensembles with large mean had large SD.

It was the other way around in the case of the SD estimation condition: small mean ensembles

had high SD values and large mean ensembles had small SD values. This difference in the
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setup is due to a compensation of a general estimation bias being detected during the pilot stud-

ies. Because of slightly different perceptual interaction between mean and variance in the four

quadrants of the stimulus space, there exist a relative bias in estimation of mean and also SD

at the intermediate values of the two features. These emerging estimation biases are plotted

on Fig. 2.5 (A) and (B). In both cases, it is clear that one diagonal pairing of two quadrants

for defining the two categories leads to more (steep) or less (flat) difference between the es-

timated values at the two sides of the boundary separating the categories (c.f. yellow and red

segments). To make sure that the observers perceptually distinguish stimuli near the implicit

category boundary so that different categorical biases could affect them, I chose the implicit

categories by using the region-pairs that allow the most distinguishability between implicit cat-

egories (red for Means and yellow for SDs). This is why the implicit structures of stimuli in

the Mean and SD conditions in this study were different. Notice that this difference does not

interfere with the general logic of the tests, since in both conditions, performance is compared

to the baseline performance with uniform distribution of data points to show some difference,

and not to each other to show relative differences.
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Figure 2.4: Stimulus distributions in the experiments. A) Baseline, B) Categorization based
on SD before Mean estimation, C) Categorization based on mean before SD estimation, D)
Mean estimation, E) SD estimation
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Figure 2.5: Task-relevant parameter estimation biases as a function of task-irrelevant para-
meter values. Plots show the data gathered in the Baseline experiment with all possible para-
meter combinations. Line plots follow mean parameter estimates of A) the Mean of circle
sizes as a function of the task-irrelevant (SD) parameter values or B) the SD of circle sizes as
a function of the task-irrelevant (Mean) parameter values, with SEM as error bars. Colored
circles correspond to the binned mean values of task-relevant parameter estimates grouped by
the higher- or lower-than-mean parameter values of the task-irrelevant parameter. Category
boundaries suggested by the data are at Mean = 47, and SD = 6.5, for Mean and SD estimation
conditions, respectively.

34



2.2.3 Context independence

The third goal of the project was to show that learners build a generative representation not

only during an involved estimation task, but even if the task/context is easy enough for them

to completely ignore the task-irrelevant aspects of the distribution. To test this, not only two

stimulus dimensions but also two separate tasks were needed. In Task 1, one of the stimulus

dimensions would be task-relevant, the other task-irrelevant. Task 1 also had to be extremely

easy to prompt the participants for a discriminative approach so that during the discriminative

learning, the observer would surely ignore the task-irrelevant dimension. In Task 2 then, the

same learner is asked to operate on the until-then task-irrelevant dimension in the same estima-

tion task that had showed the generative bias effect after substantial practice. If the learner built

a discriminative representation for Task 1, the corresponding representation should in no way

bias their performance in Task 2, and the generative bias should emerge in the same extended

period of time as in the condition with no preceding categorization task. However, if the ob-

server performs generative learning even during the easy categorization in Task 1, the learner’s

acquired knowledge about the joint distribution of the two stimulus/feature dimensions in Task

1 should bias their behavior from the very first trials of Task 2 regardless of the fact that the

relevant dimensions in the two tasks are different.

Additional task

In Experiment 2, prior to the parameter estimation task, I inserted an extremely easy categoriz-

ation task involving the stimulus parameter that later became irrelevant in the estimation task.

For example, participants first had to categorize stimuli based on their SD, and then in the

second part of the experiment, they had to estimate the means of circle ensembles. Were the
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participants showing the same behavioral biases right at the beginning of the Task 2 estimation

task (discussed in Section 2.2.2), it would be a sign of generative learning even in the context

of a task that would require a much simpler, discriminative representation.

For Task 1, the easy categorization task in Exp. 2, stimuli were generated by sampling the

task-relevant (later, at the estimation task, task-irrelevant) parameter values from the extremes

of the range, while the task-irrelevant (later relevant) parameter values were sampled near the

implicit category boundary (Fig. 2.4B,C). This ensured that Task 1 was easy enough so that

participants felt no need to deliberately pay attention to task-irrelevant parameters in search for

extra cues that could make the task easier. Meanwhile, sampling the task-irrelevant parameter

near the implicit category boundary prevented participants from calling attention to the distri-

bution of the initially task-irrelevant dimension.

2.2.4 Participants, Stimuli, Design and Procedure

Participants

207 participants (mean age 22.3, 127 women) gave informed consent and participated in the

experiment. The experimental protocols were approved by the Ethics Committee for Hungarian

Psychological Research.

Design

The experiment was created and presented with MATLAB 2014a on an iMac 27” (2560*1440)

using Psychophysics Matlab toolbox, conducted in a dimly lit room.

All three experiments had two possible conditions that were defined by the parameter that
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the participants had to estimate: mean or SD of circle sizes. The procedures were the same for

both conditions with a slight difference in the structure of the practice trials described below.

Practice

In all experiments, a practice phase preceded the test where participants got familiarized with

the response method. Possible mean and SD values were mapped onto a semicircle (Fig. 2.6),

and participants gave their estimates by drawing a line on a touchpad with a pen. The angle of

their line indicated the estimated value and the length of the line corresponded to their subjective

uncertainty about their estimate. This instantaneous and joint response about the value and

the uncertainty of the observer is a preferable method over a successive and highly cognitive

estimate of inner uncertainty.

Figure 2.6: Mapping of circle sizes and SD values onto the response semicircle. These im-
ages demonstrating the mapping of stimulus parameter values onto angles of the semicircle
were presented to participants while they were explained the task. The circles are only for
demonstration purposes, they were not presented in the display.

In each of the 100 practice trials, participants saw a fixation cross for 500ms, then a circle

ensemble appeared and remained on screen until the end of the trial. 500 ms after the appear-

ance of the ensemble, a response semicircle was added in the middle of the ensemble where

participants could provide their estimates. During practice of the mapping from their percep-

tion onto the response method of the experiment, corrective feedback was provided after every
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trial. For both mean and SD estimate, the participant’s response remained visibly superimposed

on the repsonse semicircle. In addition, in the mean estimation condition, the feedback was a

red circle appearing below the semicircle for 1500ms indicating the size of the circle the sub-

ject’s response line’s angle corresponded to. Based on extensive literature, the true mean size

value was not provided as observers are known to have a very precise notion about the correct

mean size of an ensemble of circles. In the SD estimation condition, additional corrective feed-

back was given in the form of a black line superimposed on the semicircle showing the correct

response next to the observers answer (see Fig. 2.7). To enhance the precision of subjective un-

certainty estimation, I implemented a modified version of the scoring function used by Lengyel,

Koblinger, Popovic and Fiser (2015). As confirmed by the observers’ behavior, the main func-

tion of the practice session was to develop a good mapping from the observers’ internal estimate

onto the experiment’s response metric, and not to "learn" the proper interpretation of the mean

and SD information.

Test

Baseline and Experiment 1

Test phase trials had the same procedure (Fig. 2.7 Estimation) both in the Baseline and in

Experiment 1. Only stimulus distributions differed: it was uniform in Baseline (Fig. 2.4A) and

formed implicit categories in Experiment 1 (Fig. 2.4 D,E). Test trials started with the present-

ation of a fixation cross for 500ms, then the stimulus was displayed with one of 9 possible

presentation times (50, 75, 100, 133, 167, 200, 300, 400 or 600ms) followed by a mask for

another 500ms. The mask was replaced by the response semicircle until response. Participants

did not get corrective feedback, only the line they drew appeared in the semicircle for 600ms.
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Scores were only presented after every 10 trials to maintain the participants’ attention. There

were 576 test trials with short breaks after every 100 trials.

Figure 2.7: Procedures of the experiments. Practice and Estimation is applicable in all exper-
iments, Categorization was only a part of Experiment 2.

Experiment 2

Following the requirement outlined in Section 2.2.3, I introduced a very easy categorization

task (Fig. 2.7 Categorization) before the conducting same estimation task as in Experiment

1 (Fig. 2.7 Estimation). To reiterate, the categorization task was performed on the stimulus

feature dimension that was irrelevant during the estimation task. For instance, categorization

was performed based on the mean sizes of the circle ensembles – irrespective of the SD –

, then participants needed to estimate the SDs during the estimation task, for which the mean

values of the ensembles were irrelevant. There were three important design characteristics of the

categorization task. First, the categorization was performed based on samples that were at the

extreme of the distribution of the category feature dimension ensuring an easy categorization

task (Fig. 2.4B,C). Second, the samples were near to the orthogonal boundary of the other
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feature that was irrelavant for categorization, but became the implicit category boundary for the

second estimation task. This ensured that the correlation between different feature dimensions

would not be strong during the categorization task. Third, the categorization was performed in

the feature dimension that was task-irrelevant in the estimation task. (Fig. 2.4B and D vs C and

E) This reduced further the possibility that participants transferred their knowledge about the

categories to the feature dimension relevant to the second task.

In the categorization task, trials started with a fixation cross (1000ms), then a circle en-

semble appeared for one of the 9 possible presentation times, followed by the same mask as

in the estimation task. Participants had to categorize the ensembles based on the simple rule

whether the task-relevant parameter of the ensembles was high or low. For instance participants

in the mean estimation condition had to categorize ensembles in the first task based on whether

the SD of the circles was small or rather it was large. They gave their category decision by

drawing a horizontal line pointing with its endpoint either to the left or to the right compared

to the starting point. On the first 80 of the 280 categorization trials a green square appeared for

300ms if participant’s response was correct and a red square indicated incorrect responses.

2.3 Results

2.3.1 Response method check and exclusion criteria

Given the novelty of the paradigm and the response method, I extensively validated them to

make sure that the participants understood the task and learned the response method properly.

I ran a baseline experiment with uniform distribution of feature values (Fig. 2.4A), binned
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possible parameter values, calculated the mean estimates for the binned datapoints, and plotted

the estimates against the true values. Apart from a Weber law-like deviation from the veridical

values, participants reliably learned the response method and showed a consistent link between

the true values of mean and SD values and their estimates (Fig. 2.8).

The few participants who failed to learn the response method or were unable to consistently

solve the task were excluded from the analysis. I calculated Pearson’s correlation between es-

timated and true parameter values throughout the experiment for each participant, and excluded

those, who did not reach a correlation of at least r = .22. They were all together 14 such

participants out of the 207.

Figure 2.8: Mean estimated parameter values for SD and mean estimates (with SEM as error
bar) plotted against true binned parameter values in the Baseline experiment. The red diagonal
line indicates veridical correspondence.

2.3.2 Logic of data analysis

My goal in the present study was to demonstrate that humans automatically, implicitly build

generative models of their environment even if there is no specific task requiring that or even

when solving a task that strongly prompts building a way easier, discriminative model of the

data.

41



If participants indeed build generative representation of the data, in Experiment 1 and 2 they

should be represented as two categories, and behavioral biases should emerge that are typical

of categorical perception. Such a typical bias is the warping of the similarity space by reducing

within-category and increasing between-category perceptual similarity, that specifically affects

stimulus regions near the category boundary (Harnad, 2003; Harnad, 2005; Pevtzow and Har-

nad, 1997). This generates the regression towards the mean effect, when perceived features of

stimuli near the category boundary are distorted in a way to be more similar to the mean of the

category (de Haan and Nelson, 1998).

Since humans are proved to be extremely quick and precise in estimating summary statistics

(Chong and Treisman, 2003; Chong and Treisman, 2005), in the analysis, I focused on trials

where the presentation times were short (50, 75, 100 ms). In these cases, sensory information

is more noisy, and the observers have to rely more on their internal representation of the stimuli

to construct the most likely percept of the stimulus. If participants structured the stimuli into

multi-dimensional categories in their internal representation due to generative learning, this

representation will serve as a prior when incoming information is noisy or uncertain. Therefore,

at short presentation times, perceptual biases such as regression to the mean should emerge.

To enhance the effect of the prior even more, I only analyzed trials where the parameter

value in the task-irrelevant implicit dimension during estimation had an extreme value, hence

they were clearly diagnostic of the category (given there were indeed implicit category repres-

entations), while in the task relevant category the trial was close to the boundary, so that the

regression to the mean effect would point to the same direction be. Such data points were com-

pared to the trials with the same parameters sampled from the Baseline experiment. (Fig. 2.9)

Since there were two implicit categories in Experiment 1 and 2, one that had smaller than aver-
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age feature (mean or SD) values and one that had larger than average feature values, I will refer

to these two categories as Small and Large categories, respectively.

In Small and Large categories, the regression to the mean bias predicts an opposing devi-

ation from the Baseline trials. In the case of the Small category, features should be underestim-

ated, while Large category features should be overestimated. Since trials with exactly the same

parameters were compared in the two experiments, any deviation from the Baseline should be

caused by a difference in the representation of stimulus distributions.

Figure 2.9: Data points sampled for analysis in the Baseline and Experiment 1 and 2. Red
circles show the mean of the categories, while red arrows indicate the direction of the expected
bias. Pairwise comparisons were conducted between respective groups of data points to reveal
deviations in Ex. 1 and 2 from Baseline.

2.3.3 Experiment 1

Experiment I tested whether participants build a generative representation of the environment

even if they do not benefit from such a representation while solving the task at hand. To test this

hypothesis, I ran Experiment 1, which was virtually the same as the Baseline experiment except
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for the distribution of the data in the test phase (Fig. 2.4D,E). Following the logic of analysis

described above (Fig. 2.9), I compared data points in Experiment 1 to the corresponding data

points in the Baseline experiment. Importantly, I analyzed the data from the first and the second

halves of the experiment separately. A significant difference already present at the beginning of

the experiment would suggest an artifact in the experimental design rather than a specific effect

of a newly formed internal representation. However, if a significant deviation in estimation

biases from the baseline emerges only in the second half of the experiment, this would suggest

that participants indeed built a generative representation despite its apparent irrelevance in the

task.

A two-tailed independent samples t-test applied to the second halves of the two experiments

revealed a significant difference both for the Small and Large categories and in the SD estima-

tion [tLargeCategory(67)=2.55, p < .05, d =.59, tSmallCategory(67)=-3.65, p < .001, d =-.81] and Mean

estimation conditions alike [tLargeCategory(55)=2.51, p < .05, d =.64, tSmallCategory(55)=-2.27, p <

.05, d =-.58]. (Fig. 2.10) This was not true for the comparisons of the first halves of the experi-

ment, where there was no significant difference either in the Mean [tLargeCategory(55)=-1.82, p =

.07, d =-.47, tSmallCategory(55)=-1.13, p < .26, d =-.3] or the SD [tLargeCategory(67)=-1.58, p = .11,

d =-.38, tSmallCategory(67)=.09, p = .92, d =-.37] conditions. (Fig. 2.10)

In Experiment 1 (as well as in Experiment 2), participants were asked after completing the

tasks whether they have noticed any regularities in the data. None of them reported that they

would have realized the presence of the two categories, not even after this information was

explicitly revealed to them.
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Figure 2.10: Results of Experiment 1. Figures depict the result of an independent samples
t-test between respective stimuli (see Fig. 2.9) of the Baseline and Experiment 1 for SD- (left)
and Mean estimation conditions (right) as well. Comparative analysis was conducted for the
first (upper row) and second halves (bottom row) of the experiment, as well as Small and
Large categories, separately. Bar heights correspond to the mean estimated parameter values
with SEM as error bars.

2.3.4 Experiment 2

In Experiment 2, participants completed a categorization task before the estimation test and, as

expected, they performed very well. In the Mean estimation condition, when the categorization

task was based on the SD of sizes of the circle ensembles, average performance was 89.5%

(± 10% SD). Performance was slightly better in the other version, when the categorize task

was based on the mean circle sizes, yielding an average of 93% (± 13% SD) correct trials. As

both versions of the categorization task were very easy, indeed, participants were not forced to

search for extra information in the distribution that could help their decision. This supports the

assumption that participates likely ignored every other aspect of the stimuli not directly relevant

to the task.

The main question of this experiment was whether the regression to the mean bias observed
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in the second, but not first half of Experiment 1 would surface already in the first half of Exper-

iment 2 under these conditions. Such an early presence of the expected bias would argue for a

generative learning during the categorization task despite of the fact that such a categorization

task would require a highly discriminative approach to the problem.

I found a significant deviation from the Baseline already in the first part of Experiment 2 in

both the mean [tLargeCategory(50)=2.05, p < .05, d =.56, tSmallCategory(50)=-2.38, p < .005, d =-.64]

and the SD estimation [tLargeCategory(78)=2.67, p < .05, d =.58, tSmallCategory(78)=-2.93, p < .005,

d =-.63] conditions. These results show that participants indeed formed the expected implicit

generative representation of the data during the categorization task.

Figure 2.11: Results of Experiment 2. Figures depict the result of an independent samples
t-test between respective stimuli (see Fig. 2.9) of the Baseline and Experiment 2. Analysis
was conducted for SD- (left) and Mean estimation conditions, as well as Small and Large
categories, separately. Bar heights correspond to the mean estimated parameter values with
SEM as error bars.

In order to ensure the reliability of my interpretation that the found significant deviations

can only be attributed to the differences in the acquired internal representations about the stim-

uli, I calculated absolute changes in parameter estimates between the 1st and 2nd halves of the

Baseline and Experiment 1 and 2. Significant changes between the two halves in the Baseline

and Experiment 2 would imply the presence of potential biases or artifacts influencing estim-

ation performance I failed to control for. In addition, as previous results would not predict
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differences in the magnitude of the found regression to the mean bias between Large and Small

categories, I also wished to verify that indeed, the effect is symmetric, there are no consistent

further biases towards either direction.

A two-way ANOVA with experiment (Baseline, Experiment 1 and 2) and category type

(Small, Large) as predictors revealed a significant main effect of experiment type for both SD

[F (2, 222) = 4.39,p < .05, η2 = .03] and Mean estimation [F (2, 151) = 5.58,p < .01, η2 = .06]

conditions. I found, however, no significant interaction between predictors, or significant main

effect of category type in either conditions [SD: F (1, 222) = .87,p = .35, η2 = .003], [Mean:

F (1, 151) = .95,p = .33, η2 = .006]. Post-hoc paired-samples t-tests on parameter estimates

between the first and second halves of each experiment only indicated significant changes in

Experiment 1 in both SD [t(32) = 2.56,p < .05,d = .48] and Mean estimation [t(26) = 2.53,p <

.05,d = .49] conditions, but not in the Baseline (Mean: p = .2, SD: p = .86) or in Experiment 2

(Mean: p = .78, SD: p = 36).

2.4 Discussion

Whether we are building models of the environment for action, designing experiments or trying

to interpret cognitive phenomena, we need to rely on our knowledge of internal representations

(Goldstone, Lippaa and Shiffrin, 2001; Gregory, 1997; Mitchell et al., 2005). Therefore, un-

covering the nature of representations is of key importance for understanding human cognition.

There are multitude of approaches to investigate representations, but most of them addresses

the issue of how much of the externally available information is stored. As it was discussed

in section 1.2 generative learning allows for a much richer representation than discriminative

learning, which is flexible enough to solve a greater variety of tasks. It would seem obvious to
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suppose that humans naturally build adaptable, generative representations and they refine those

representations when they face novel tasks.

Yet, only a handful contradictory results exist addressing this issue in human research. Some

argue that the nature of learning depends on the learning context which strategy is adopted (Hsu

and Griffiths, 2010), while others support the idea of exclusivity of generative learning (Beh-

bahani and Faisal, 2012). Since even the latter type of papers provide questionable evidence

as a result of flaws in the experimental designs (see sections 2.1.1 and 2.1.2), I created a new

paradigm that aimed to correct these flaws and unequivocally support the theory of context-

independent, automatic, implicit generative learning in humans.

In two experiments, I have shown that participants indeed built implicit generative repres-

entations of incoming data even if the distribution of the stimuli was completely irrelevant for

solving the task, or even if the task strongly prompts a much simpler discriminative representa-

tion.

Automatic implicit learning was demonstrated in Experiment 1 by the appearance of cer-

tain behavioral biases typical of the presence of categories in the representation as opposed to

a Baseline experiment, where there were no such categories formed in the data distribution.

Crucially, the measured bias appeared gradually by the end of the experiment, excluding the

possibility that the measured bias is inherent to the data and not the learning process or the

resulting representation.

Experiment 2 provided further evidence for the fundamental role of generative learning

by showing that even in the presence of a task interfering with the overall processing of the

incoming input, the emerging representation preserves its generative character. Before assessing

the magnitude of the same bias as in Experiment 1, participants were asked to complete an
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extremely easy categorization task that typically prompts discriminative learning, while the

distribution of the data would still allow for building a similar categorical representation as

in Experiment 1. Perceptual biases indicating category formations based on the full structure

of the input still emerged. Critically, the behavioral bias that was previously measured in the

second half of Experiment 1 was now already present in the first part of the same estimation

task.

The lack of significant modulation of estimation biases by time (1st vs 2nd halves of para-

meter estimation task) or the type of category in the Baseline and Experiment 2 strengthen the

current interpretation that attributes the observed regression to the mean bias solely to the struc-

tured, generative internal representation of categories defined by the distribution of stimuli in

the parameter space.

Thus, we can conclude that even if a task is easy enough so that a simple, discriminative

representation suffice for solving it perfectly, humans build a generative internal model of the

data that implicitly influence their behavior in any subsequent task.
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Chapter 3

Integration of supervised and

unsupervised information in SSL

3.1 Introduction

Apart from being a more suitable type of learning than discriminative learning, generative learn-

ing is also necessary for SSL. As discussed by Kalish, Zhu and Rogers (2015) and Gibson et al.

(2015), processing and integration of supervised and unsupervised information requires a gen-

erative approach, i.e. assuming the same underlying generative model that provides samples for

both types of learning.

Indeed, available evidence in the SSL literature supports the hypothesis that humans take

a generative approach to integrating supervised and unsupervised information when learning

about categories. However, a significant amount of the literature fail to provide strong evidence

in favor of true SSL, and as a consequence, the generative approach to processing supervised

and unsupervised data. As McDonnell, Jew and Gureckis (2012) pointed out (see Section 1.1.3),
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a slight shift in the category boundary suggested by supervised vs. unsupervised samples does

not require a radical update in the representation, which would be necessary for a strong support

in favor of SSL. Lacking such evidence, the generative approach of semi-supervised learning is

also unsupported. Kalish, Zhu and Rogers (2015) created a design to provide stronger evidence

in favor of SSL by making learners (children) re-categorize certain elements throughout the

learning process to the opposite category as a result of the integration of supervised and unsu-

pervised information. Their results imply a developmental shift in children’s learning behavior.

Older children (around the age of 7-8 years as opposed to approximately 4-5 years) tended to

weight supervised information much more, and practically ignore the distribution of unsuper-

vised stimuli. Meanwhile, younger children relied much more on the natural distribution of the

stimuli, which resulted in the change of category representation sought by researchers of SSL.

This dichotomy raises the question whether their results could be interpreted as a general evid-

ence for the radical update of the internal representation McDonnell, Jew and Gureckis (2012)

called for.

A comprehensive assessment of whether SSL operates as generative learning requires the

clarification of two questions. First, whether the latter phase of SSL results in a true update of

the category representation suggested by initial learning. In other words, one needs to show that,

after forming some categories in the initial phase of SSL, the additional new information in the

second part of SSL makes the learner re-categorize elements of the acquired categories in a way

that it is consistent with the representation gained by combining ’old’ and ’new’ information.

Second, it needs to be shown that supervised information also gets integrated into the repres-

entation built by unsupervised information instead of simply overwriting it. There are only

three studies in the literature with a design that presents learners with the supervised samples
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of SSL after, interleaved, or simultaneously with unsupervised samples, and not strictly before

them. Since the stimuli, addressed population and form of presentation in these three studies

are all different, it is almost impossible to draw a clear conclusion from them with respect to

the questions above.

Based on these studies, the following is known about the impact of supervised information

on the representation suggested by unsupervised trials in categorization tasks:

• if the provided unsupervised information lack a clear structure, subsequent supervised

information can help the learner orienting their attention to relevant features of the stimuli

and creating categories that matches the representation offered by supervised information.

However, if the distribution of the unsupervised stimuli is structured enough so that the

learner can form clear clusters, subsequent supervised information not contradicting the

natural unsupervised clustering of the data will not make much of a difference in the

resulting representation in adult learners (Vong, Navarro and Perfors, 2015).

• infants do not benefit from supervised information when learning about categories if the

supervised segment follows the segment with unsupervised samples (LaTourrette and

Waxman, 2018).

• younger children prefer to create categories along the natural distribution of unsupervised

samples, and their representation is not influenced strongly by supervision. In contrast,

older children are more inclined to rely completely on the strong, salient supervised in-

formation, and this prevents them from incorporating unsupervised data, when supervi-

sion is frequently interleaved with unsupervised information (Kalish, Zhu and Rogers,

2015).
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In the rest of this chapter, I will present a study that aims at clarifying the above mentioned

two missing details in the research of SSL by answering the following three questions:

1. Do learners truly update their representation of learned categories even when this up-

date requires them to categorize particular samples differently at the end of the learning

process compared to the beginning?

2. Will supervised information overwrite the initial representation built by unsupervised data

or will it be integrated into a joint representation by modifying it only to an extent that

will still be compatible with the initial representation?

3. Does the order of the presentation of supervised and unsupervised information matter,

or will learners arrive to the same representation irrespective of whether they received

supervised or unsupervised samples first?

3.2 Methods

3.2.1 Participants

135 subjects [82 females, mean age = 25 years] gave written informed consent and completed

the experiment. 24 subjects were excluded for responding randomly at either of the two test

phases, and an additional 25 subjects’ data were not analysed as they failed to perform on the

supervised training above 65% accuracy by the end of the training phase.
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3.2.2 Stimuli

After extensive investigation, I decided to use the stimuli originally created by Op de Beeck,

Wagemans and Vogels (2001) for the following four reasons.

First, based on the critique phrased by McDonnell, Jew and Gureckis (2012) of previous

studies using primarily one dimensional stimuli, I looked for stimuli varying on multiple feature

dimensions. This provides a much richer set of options to select diagnostic features for learning,

and thus the category distributions suggested by supervised and unsupervised information could

be clearly and obviously distinguishable.

Second, since my goal was to investigate how learners integrate supervised and unsuper-

vised information, especially when the two learning regiments suggest markedly different cat-

egory structures, I needed a stimulus space where category boundaries defined along different

feature axes (or a combination of these) are almost equally easy to learn. Since diagonal bound-

aries (II learning) are proved to be more difficult to learn with separable dimension stimuli,

I chose to work with integral dimension categories where the categorization rule is harder to

verbalize, and categorization strategies requiring the integration of different feature dimensions

(a.k.a. a diagonal boundary) are easier to adopt (Handel and Imai, 1972; Nosofsky and Palmeri,

1996).

Third, I needed stimuli continuously varying on all of the relevant feature dimensions so

that the learner’s representation, or category boundary could be reliably assessed and retrieved

based on their categorization behavior in a dense stimulus space.

Finally, since I aimed at avoiding possible artifacts resulting from diverse priors the learners

might have, I needed a stimulus set of novel shapes that the learners would not be familiar with.

Based on these aims and after an extensive piloting, an appropriate subspace of the Op de
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Beeck et al. stimulus space was identified, and 100 novel stimuli (360x250 pixels in size) were

generated and ordered in a two dimensional matrix as presented in Fig.3.1.

Figure 3.1: Stimuli used in the study ordered in a two dimensional matrix.

3.2.3 Design

There were four conditions of the experiment defined by the order of supervised and unsuper-

vised information and the stimulus dimension along which the initial category boundary was

suggested by the data. All four conditions were consisted of two Learning phases followed by

Test phases (Fig.3.2).

In Condition 1, learners first had to categorize two repetitions of 60 stimuli presented in ran-

dom order in an unsupervised manner, where the distribution of the data suggested a category

boundary along the vertical axis of the stimulus matrix. In the second Learning phase, they

received 20 repetitions of 4 stimuli, followed by corrective feedback after each of their category

decision. Crucially, the boundary suggested by the stimuli was defined along the horizontal axis

of the stimulus matrix, orthogonal to the one suggested by unsupervised trials.

Condition 2 counterbalanced Condition 1 with respect to the suggested boundaries: initial un-

supervised trials prompted a boundary along the horizontal axis of the stimulus matrix, while
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following supervised trials tried to teach participants a boundary orthogonal to that.

Conditions 3 and 4 counterbalanced the first two conditions with respect to the order of the

type of information participants received. Specifically, in Condition 3, they received supervised

trials first that suggested a vertical boundary, then they received unsupervised trials with data

distribution prompting a horizontal boundary. In Condition 4, the order of vertical, horizontal

boundaries was reversed compared to Condition 3.

Participants in Condition 1 and 4 and in Condition 2 and 3 received the same supervised

and unsupervised information, respectively, only in different orders. Condition 1 and 4 both

included unsupervised information suggesting a boundary along the vertical axis of the stim-

ulus matrix, with supervised information suggesting a boundary orthogonal to that, while in

Condition 2 and 3, the pairing between type of learning and orientation was the opposite.

Importantly, the ratio of supervised and unsupervised trials was not as imbalanced as in

previous studies, to avoid the situation, in which the second round of Learning phase completely

washes out the representation built by the first one as a result of overtraining. Also, as samples

did not cover the entire stimulus space, they left a wide range of possible boundaries available

for the learners to find, allowing them to build a representation compatible with both supervised

and unsupervised information, i.e. a boundary that is diagonally separating the stimulus matrix.

Across all conditions, the Test phases following the Learning phases were identical. During

the Test phase, participants were presented with all the stimuli in the stimulus matrix in random

order not only the outer 60 shapes, and they had to categorize them without feedback. As

the Tests covered the entire stimulus space, it allowed for a precise estimate of the boundary

participants used in the stimulus space, while it did not provide any additional information in

favor of either of the possible representations suggested by supervised or unsupervised data.
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Also, since the two Test phases were identical, it allowed a fair comparison between them, for

qualifying the effect of the second Learning phase.

Figure 3.2: Layout of the design of the study.

3.2.4 Procedure

The experiment was created and presented with MATLAB 2014a on an iMac 27” (2560*1440)

using Psychophysics Matlab toolbox. It was conducted in a dimly lit and sound attenuated

room.

In each condition, a cover story preceded the experimental instructions. Participants were

told that biologists discovered a new family of deep sea creatures called by made-up labels of

Bitye and Tacok, or Dax and Wug for English speaking participants. These names were also

used in earlier studies (Parise, Pomiechowska, Volein, Takács and Csibra, 2018). Participants

were also informed that the families consisted of equal number of members. Before the unsuper-
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vised learning phases, participants were instructed to categorize members of the two families as

they saw fit, while before supervised learning phases, they were told that they would be taught

to classify the creatures correctly, and they should try and learn them as fast as possible. There

were no additional instructions preceding the Test phases after unsupervised Learning. When

the Test phase followed supervised Learning phases, participants were informed that they no

longer would receive feedback after their category decisions.

Each trial started by a stimulus appearing in the middle of the screen and it remained there

until response. Participants responded by a left or right mouse click. Responses were followed

by a blank screen for 500 ms. During the supervised Learning phases, after the blank screen,

either a green or red square appeared for another 500 ms indicating whether the category de-

cision of the participant was correct or not. At the end of each trial, learners were asked to

indicate their confidence in their decision by adjusting a bar on a scale ranging from 0% to a

100% with moving the mouse on the vertical axis of the screen.

3.3 Results

Participants performed reliably well in all conditions in the first Learning phase with a mean

accuracy of 93% in the supervised and 84.5% in the unsupervised training. Their performance

was worse (84.5% and 64%) in both types of tasks when those appeared in the second Learning

phase (Fig. 3.3). A two-way ANOVA revealed no significant interaction between learning type

(supervised/unsupervised) and order (at Learning1 or at Learning2) [F (1, 74) = .26,p = .6, η2 =

.44]. There was however a significant main effect of learning type (p < .001), but not of order

(p = .92).
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Figure 3.3: Learners’ categorization performance relative to the objective category bound-
ary suggested by data distribution of feedback for unsupervised (blue) and supervised (green)
tasks, respectively, in both learning phases. Circles represent the mean percent correct per-
formance of each group with SEM as error bars. In lighter colors the same measure is depicted
separated by condition.

3.3.1 Defining category boundaries

For all four conditions, data from both Learning and both Test phases were analysed separately.

First, the initial 60 and 40 trials of unsupervised and supervised learning phases, respectively,

were discarded from the analysis to avoid unnecessary noise due to initial adjustment periods.

Response data were transformed into a signed distance value from the inferred boundary and

fed to a logistic regression model written in Matlab Stan to infer the angle of the boundary and

the slope of the regression function.

While investigating the distribution of the angle of inferred boundaries in the first Test phase,

I discovered that not all participants defined a boundary along the cardinal axes of the stimulus

matrix (Fig. 3.4). In all conditions, half of the learners categorized incoming stimuli more along

a diagonal boundary. For these learners, the distribution of the data in Learning phase 2 sugges-

ted a category boundary that was more in line with their close-to-diagonal initial representation
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(as inferred from their responses in Test 1), which made it easier for them to interpret and in-

corporate new incoming data into their already existing representation. Therefore, I decided

to handle these participants separately in further analyses from those who inferred a boundary

more along the cardinal axes of the stimulus matrix. These two groups will be referred to as

the Diagonal and Cardinal groups, respectively. This left me with sample sizes in each group

summarized in Fig. 3.4.

Figure 3.4: Left: Distribution of angles participants defined at Test1. Gray background signals
boundary angles that participants defined in the Cardinal group. Right: Sample sizes in each
group and condition.

Participants of the Cardinal group in Condition 1 and 2 were all sensitive to the distribution

of the data and defined a category boundary along the axis of the stimulus matrix suggested

by the distribution of the data. There were only 5 participants in Condition 2, who defined a

vertical boundary in spite of the fact that data distribution suggested a horizontal one. These

participants were excluded from further analysis, as supervised trials at Learning phase 2 sug-

gested a category boundary that was in line with their initial representation, which defeats the

purpose of analyzing the impact of additional supervised trials suggesting a different boundary

from the original.

To quantify the accuracy of inferred boundaries, I calculated the percent of trials matching

between human data and the inferred boundary for all conditions and all Learning and Test
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phases. The inferred boundaries predicted participants’ categorization responses reliably well,

as on average, the match was over 80% in all conditions. Best matches were achieved in the

two Learning conditions, where average model accuracy was above 90%. Since data density

around the inferred boundary was higher in the Test phases, noisy human responses might result

in lower match between model prediction and human data (Fig. 3.5).

Figure 3.5: Match between inferred boundaries and human data for Cardinal and Diagonal
groups. Black dots correspond to mean percent match in each learning and test phases, while
colored dots and error bars represent mean and SEM of percent match in each condition for
Learning and Test phases.

3.3.2 Changes in the representation caused by additional information

Results of the fitted logistic regression models provided two important measures of participants’

representations: the angle of the inferred boundary, i.e. how are data clustered in participants’

internal representation about them, and the slope of the regression function which is an indirect,

implicit measure of the learners’ confidence towards this representation.
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3.3.2.1 Changes in the angle of the boundary between Test phases

To quantify the effect of information gained by learners in the second Learning phase on the

initial representation measured at Test 1, I first calculated the absolute angle changes from Test

1 to Test 2 (Fig. 3.6). One sample t-tests indicated significant changes from 0 degrees in all

eight groups. Most changes occurred in Conditions 1 (M = 58.83, SD = 31.25) and 2 (M = 56.6,

SD = 29.82) with no significant differences between these two conditions in either the Cardinal

[t(19) = .17,p = .87,d = .07] or Diagonal [t(17) = −.03,p = .97,d = −.01] groups.

Interestingly, though angle changes were not significantly different between Conditions 3

and 4 in the Cardinal group [t(19) = −1.81,p = .09,d = −.79], a two-sample t test indicated that

angle changes were significantly more prominent in Condition 4 (M = 13.11, SD = 11.12) than

in Condition 3 (M = 4.35, SD = 3.37) [t(18) = −2.49,p < .05,d = −1.12].

Figure 3.6: Absolute changes in the angle of category boundaries participants defined from
Test1 to Test2. Bars depict the mean of changes in each group with SEM as error bars. Black
dots represent individual subject’s data both in the Cardinal (left) or Diagonal (right) groups.

3.3.2.2 Changes in the slope of the regression function between Test phases

Changes in the angle of the boundary is only one measurement of the internal representation

of learners. Knowing how sharp this boundary is, or whether as a result of additional learning,
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participants start responding more or less noisy around the boundary at Test 2 is at least as

important as knowing where the separating line lies between the categories. As the slope of the

fitted regression function is a good approximation of noisiness around the boundary, I calculated

changes in the slope at Test 2 relative to their initial value measured at Test 1 to avoid misleading

magnitudes resulting from individual differences. (Fig. 3.7).

Except for Condition 1 in the Cardinal group, there were no significant changes in the slope

of the regression function between the two Test phases. The slope in Condition 1 of the Cardinal

group decreased significantly by 43% (SD = 31.44) [t(9) = 4.37,p < .01,d = 1.38]. This

change was not significantly higher than the relative change of the slope in Condition 2 [t(19) =

1.02,p = .32,d = .45], however, it differed from the ones observable in Conditions 3 [t(18) =

2.59,p < .05,d = 1.16] and 4 [t(19) = 3.98,p < .001,d = 1.74] as well.

Figure 3.7: Relative changes in the slope of the regression function fitted to learners’ category
responses. Positive values indicate the increase of noise (i.e. decrease in confidence), while
negative values correspond to the sharpening of the boundary by Test 2 relative to Test 1.
Bars depict the mean of changes in each group with SEM as error bars. Black dots represent
individual subject’s data both in the Cardinal (left) or Diagonal (right) groups.
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3.3.2.3 Differences in the final representation across groups and conditions

Though boundary and slope changes are appropriate to quantify the effect of the information re-

ceived at the second Learning phase, it is also important to take a look at the final representations

as well. A two-way ANOVA with Conditions and Groups as predictors revealed no significant

interaction either for slopes measured at Test 1 [F (3, 78) = 1.25,p = .29, η2 = .06] or at Test 2

[F (3, 78) = 1.77,p = .16, η2 = .04]. Test results indicated no main effects at Test 1 either for

Condition [F (3, 78) = 1.93,p = .13, η2 = .13] or Group [F (1, 78) = 1.64,p = .2, η2 = .008]. For

Test 2, however, it revealed a significant main effect, though with small effect size, for Condi-

tion [F (3, 78) = 3.7,p < .05, η2 = .07], but not for Group [F (1, 78) = .65,p = .42, η2 = .02].

Such a significant main effect can be explained by the already reported significant decrease in

the slope summarized at Fig. 3.7.

Figure 3.8: Mean slopes of the regression function inferred from the data gathered at Test1
(diamonds) and Test2 (circles) phases, for the Cardinal (left) and Diagonal (right) groups sep-
arately, with SEM as error bars.

Considering the angle of the boundaries defined by participants, as the two extremes of a

possible representation is either a horizontal or a vertical boundary (a line with an angle of
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0/180 or 90 degrees), I transformed all inferred angles at Test 1 and Test 2 into a value on a

scale ranging from 0 and 1, corresponding to a horizontal and vertical line, respectively. Such

relative angle values allow me to define if a boundary line is closer to a vertical or a horizontal

boundary irrespective of whether a vertical line is approximating 90 degrees with an acute or

obtuse angle, and similarly, whether a close-to-horizontal boundary is closer to a 0 or a 180

degree angle.

I discovered a markedly different effect of Learning 2 signaled by the changes from initial

(boundary angle at Test1) to final (boundary angle at Test2) representations between the Car-

dinal and Diagonal groups. (Fig. 3.9) A two-way ANOVA indicated a significant interaction

between the type of information received at Learning 2 (i.e. supervised in Conditions 1 and 2

or unsupervised in Conditions 3 and 4) [F (1, 38) = 8.44,p < .01, η2 = .09]. Simple main ef-

fects analysis revealed a significant difference between both factors. Supervised information at

Learning 2 had a much larger impact on the boundary than unsupervised information (p < .001),

and such changes were much larger on average in the Cardinal group than in the Diagonal group

(p < .01).

Paired samples t-tests for all Conditions in both Groups revealed a significant change of

the angle of the boundary in Condition 1 [t(9) = 5.37,p < .001,d = 2.67] and Condition 2

[t(10) = −6.7,p < .001,d = −3.12] of the Cardinal group, and in Condition 2 [t(8) = −3.7,p <

.01,d = −1.53], but not in Condition 1 of the Diagonal group.

It is also interesting to examine how the final representations differ from one another across

Groups and Conditions. A one-way ANOVA failed to reach significance when comparing the

final relative boundaries of Conditions 1 and 4 in the Cardinal and Diagonal groups against

each other [F (3, 35) = 1.98,p = .19, η2 = .14]. However, such a comparison revealed significant
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differences across Conditions 2 and 3 in the Cardinal and Diagonal groups [F (3, 38) = 4.01,p <

.05, η2 = .24]. Post hoc two-sample t tests were only significant when comparing Condition 3

of the Cardinal group to any of the Condition 2 (Cardinal) (p < .05) or Condition 2 (p < .05) or

Condition3 (Diagonal) (p < .001) groups.

Figure 3.9: Relative angles of the boundaries inferred at Test1 and Test2 for all conditions in
both Cardinal (left) and Diagonal (right) groups. The closer a value is to 1, the more vertical
is the angle of the inferred boundary, while the closer it is to 0, the closer it is to a horizontal
line. Diamonds correspond to the mean of the relative angles at Test1, circles stand for the
mean of these at Test2, with SEM as error bars.

Considering the significant changes in the angles of category boundaries in Condition 1 and

Condition 2, a strong effect of supervised training in Learning 2 seems obvious. If we hypothes-

ize that as a result of generative learning participants try to incorporate new information into

their already existing representation, their learning performance should be worse in Condition 1

relative to Condition 4 or Condition 2 relative to Condition 3. In Conditions 1 and 2 participants

already have a representation built by unsupervised information, as a result, they already have

an articulated prior on the angle of the category boundary, compared to Conditions 3 and 4
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where no task precedes supervised learning, so learners’ prior about the boundary should be

assumed almost flat. Assuming generative learners, who aim to incorporate new information

into their already existing representation, the mismatch between the boundary inferred from

unsupervised trials and the one suggested by supervised information should also modulate per-

formance on the supervised training. The larger the mismatch, the worse learners’ performance

should be. As a result, performance in Condition 1 or 2 of the Diagonal group should be better

than performance of Condition 1 or 2 of the Cardinal group.

Analyzing performance at supervised training in Conditions 1 and 4 should be handled

separately from the ones in Conditions 2 and 3. In the earlier case participants received unsu-

pervised information suggesting a vertical boundary, while supervised training aimed to teach

them a horizontal one, so the type and distribution of information was the same, only in different

order. This was the other way around in Conditions 2 and 3.

First, I split trials at supervised Learning into 8 bins of equal size to get a learning curve and

see trends in improvement. A two-way ANOVA revealed significant main effects of both bins

and Condition (p > .001) as predictors for performance at supervised training, both at comparing

Conditions 1 and 4 [time bins: F (7, 208) = 14.22,p > .001,η2 = .32], [Condition: F (2, 208) =

41.48,p > .001,η2 = .28] and Conditions 2 and 3 [time bins: F (7, 208) = 7.66,p > .001,η2 =

.19], [Condition: F (2, 208) = 22.91,p > .001,η2 = .1]. To further analyze learning trends, two

one-way ANOVAs were run separately for the early and late stages of the learning process by

collapsing the fist two and the last two bins of data in all groups and conditions. Results revealed

no significant differences between Conditions at the early stages of learning for the comparison

of Conditions 1 and 4 [F (2, 57) = 2.14,p = .12, η2 = .06], nor when comparing Conditions 2 and

3 [F (2, 61) = .67,p = .51, η2 = .01]. By the end of the training session, performances became

67



significantly different comparing Conditions 1 and 4 [F (2, 57) = 20.75,p < .001,η2 = .43], as

well as comparing Conditions 2 and 3 [F (2, 61) = 9.25,p < .001,η2 = .23]. Post hoc two-

sample t tests revealed significant differences between Condition 1 and 2 (Cardinal groups)

(p < .001), Condition2 of the Cardinal and Condition1 of the Diagonal (p < .01) as well as

between Condition 1 of the Cardinal and Condition 1 of the Diagonal group (p < .01). Similarly,

I found significant differences between Conditions 2 and 3 of the Cardinal group (p < .001),

and even between Condition2 of the Cardinal group and Condition 2 of the Diagonal group

(p < .05), but differences did not reach significance between Condition 3 of the Cardinal group

and Condition 2 of the Diagonal group (p = .07).

Figure 3.10: Comparison of changes in performance over supervised learning phases of dif-
ferent groups and conditions. Trials were split into 8 bins of equal size, and mean performance
plotted with SEM as error bars. Conditions 1 and 4 of the Cardinal group and Condition1 of
the Diagonal group were compared (left), and conditions 2 and 3 of the Cardinal group and
Condition2 of the Diagonal group were compared (right), separately.
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3.4 Discussion

In this study, I investigated two important attributes of SSL: the nature of the update of internal

representations as a result of additional information (addressing the problem raised by McDon-

nell, Jew and Gureckis (2012)), and the effect of the order of presentation of supervised and

unsupervised information, with a special emphasis of the integration of supervised information

into the internal representation formed by unsupervised trials. To this end, I designed a study,

where in four conditions, participants received almost equal amount of supervised and unsuper-

vised trials suggesting category boundaries in the stimulus space that were orthogonal to each

other.

Even though learners’ good initial performance, estimation of the angle of the boundaries

they used to categorize incoming stimuli revealed that half of them defined a category boundary

that separated the stimulus space diagonally instead of the cardinal one that would be a pri-

ori assumed based on the findings of previous studies, where participants inferred the category

boundary to be at the mid point between presented (supervised) stimuli (Zhu et al., 2007; Lake

and McClelland, 2011; Kalish et al., 2011; Kalish, Zhu and Rogers, 2015; Gibson et al., 2015)

(Fig. 3.4). The fact that learners performed well at Learning1 and still, they built a repres-

entation with a diagonal boundary ensures that such a boundary is a valid compromise when

one intends to integrate information suggesting orthogonal boundaries at two separate Learning

phases.

Supervised and unsupervised information in Learning 2 had markedly different effects on

the initial representation built at Learning 1. Examining only the changes in the angle of the

boundary inferred from data at Test 1, the initial, and Test 2, the final representation, lack of

significant changes in Conditions 3 and 4 might imply that unsupervised data had no effect on
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the representation built by supervised data at Learning phase 1. (Fig. 3.9) Supervised inform-

ation, however caused significantly higher changes in the representation built by unsupervised

data, at least in the Cardinal group. Considering the absolute changes in the angle of the cat-

egory boundary (Fig. 3.6), interestingly, I found no significant differences between Conditions

1, 2 and 4 in the Diagonal group. Which implies that unsupervised information in the second

Learning phase had a similar effect on the representation built by supervised data than the other

way around in Conditions 1 and 2.

An effect of unsupervised information on the forming final representation can also be ob-

served by comparing participants’ performances on Learning 1 and Learning 2. Participants’

responses at Learning phase 1 suggest that they acquired the categories well relative to the

category boundary suggested to them by the distribution of the data at unsupervised Learning

phases or corrective feedback at supervised Learning phases. (Fig. 3.3) However, when received

the same type (supervised or unsupervised) of data at Learning phase 2, their performance on

both types of tasks dropped significantly both for supervised [t(80) = 3.04,p < 0.001,d = .75]

and unsupervised [t(80) = 5.55,p < 0.001,d = 1.22] tasks, which signals an interference with

the initial representation.

A closer examination of participants’ performance at supervised training at Learning phase

2 revealed that their performance at the supervised training is modulated by the proximity of the

boundary inferred at Learning 1 to the one suggested by Learning 2. (Fig. 3.10 dashed blue vs

solid blue line for Conditions 1 and 4 (left), and dashed green vs solid green line for Conditions

2 and 3 (right)). Such a behavior can be interpreted as an attempt to integrate new incoming

data into their initial representation of the categories (formed by Learning 1). Such an attempt

can be considered as a hallmark of generative learning, where both supervised and unsupervised
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information are considered to be generated by the same underlying model.

Comparing relative angles of the inferred boundaries at Test 1 and Test 2 is also in favor

of the generative hypothesis of learners (Fig. 3.9). Supervised information did not overwrite

the initial representation, only modify it drawing it more towards a final representation that

is compatible with the information possibly gained from both supervised and unsupervised

samples. A similar tendency is observable in the Diagonal group, however, significant changes

are only induced in Condition 2 by the supervised Learning phase (Diagonal group of Fig. 3.9).

The fact that supervised information did not overwrite completely the initial representation to

an extent that participants abandoned the boundary they inferred from unsupervised data can be

considered as a hallmark of generative learning, where the learners’ goal is to build a model of

their learning environment that can fit all incoming information irrespective of the presence or

absence of supervision.

However, supervised information seemed to influence the representation built by unsu-

pervised samples more than the other way around, especially when the suggested boundaries

markedly differed from one another (Cardinal group of Fig. 3.9). Such a behavior of learners

is not surprising given the findings of Zeithamova and Maddox (2009). They found that even

without explicit supervision, if the sequence of incoming unsupervised samples make one fea-

ture dimension more salient then another in a two dimensional feature space, participants will

be more likely to categorize along this salient dimension, even if the distribution of the data

clearly favors a feature dimension orthogonal to that. In addition, since supervised samples

are considered to be stronger and more salient than unsupervised ones (Kalish, Zhu and Rogers,

2015), it is not surprising that learners would not abandon the boundary suggested by supervised

information. This strategy of learners is reflected in the insignificant changes in the angle of the
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boundary both in the Cardinal and Diagonal groups. Such a learning behavior is also consist-

ent with the generative hypothesis of learners’ strategy of processing incoming information. In

the Diagonal group (as explained in Section 3.2.2) the distribution of unsupervised information

allows for a possible diagonal boundary as well, so the initial representation can be considered

as being in line with the one suggested by unsupervised data. Considering the Cardinal group,

though learners might be able to incorporate the gap in the distribution of unsupervised samples

into their representation, but the boundary is not necessarily defined along the midpoints of the

gaps in the distribution of stimuli in such a two dimensional stimulus space (Zeithamova and

Maddox, 2009).

The lack of significant differences in the final representation indicated by the angle of the

inferred boundaries between the Cardinal and Diagonal groups also supports the generative

hypothesis of learners. Irrespective of the magnitude of the change necessary for finding a

representation compatible with supervised and unsupervised data, learners arrive to the same

results. The fact that these representations in Conditions 1 and 4 as opposed to Conditions 2

and 3 differ from one another imply that supervised information is indeed stronger, drawing

the final representation towards the direction that favors supervised training, i.e. towards the

vertical axis in Conditions 1 and 4, while towards the horizontal axis in Conditions 2 and 3.

The fact that I found significant absolute changes in the angle of the category boundary for

Condition 4, but not for Condition 3 in the Diagonal group (Fig. 3.6), a significant decrease in

the slope of the regression function at Condition 1, but not Condition 2 in the Cardinal group

(Fig. 3.7), or the fact that there were 5 participants preferring to define the category boundary on

the vertical axis, while they were receiving data suggesting a horizontal boundary at Condition 2

all point to the direction that there is are more factors defining participants’ internal representa-
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tion than only the type (supervised, unsupervised) and distribution of the data, or the order of the

presentation of supervised and unsupervised information. However, a pilot study failed to in-

dicate firm preferences for any of the features of the stimuli that could be considered to be more

salient than others, these results suggest, that there might be an implicit preference for defining

the boundary along the vertical axis of the stimulus matrix. Such, possibly implicit preferences

seem to bias the resulting internal representation of the categories just like parameters of the

learning environment that are transparent to an experimenter. To gain a deeper understanding

of the processes at play while the acquisition of novel categories, researchers should aim for re-

trieving as detailed information about learners’ internal representation throughout the learning

process as possible, so that they could account for hidden influencing factors.

Finally, in line with previous critique discussed at the introduction of this chapter, in this

study all significant changes in the angle of the boundary from Test 1 to Test 2 inherently re-

quired the re-categorization of certain elements in the stimulus space. Any significant changes

can be considered to be a result of true update of the internal representation.

Based on the above findings, we can conclude that learners indeed update their represent-

ation as a result of additional incoming information in SSL. Such a change in representation

can be elicited both by supervised and unsupervised information. To be able to quantify such

radical updates, it is worth using high density multidimensional stimuli.

Supervised information does not overwrite the initial representation built based on unsuper-

vised samples. The nature of the integration of additional information is such that is seeks for

a hypothesis in the space of possible boundaries which will be consistent with both supervised

and unsupervised information provided.
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Taken together the present results with that of previous studies, it seems that the order of

presentation of supervised and unsupervised information does not matter, as long as they do

not contradict one another to an extent that makes their handling as part of the same generative

model impossible.

Implications to previous studies

The findings and conclusions discussed above have important implications to at least two

previous studies. In their conclusions, Zhu et al. (2007) failed to explain an apparent flattening

of decision curves of each participant after the exposure to unsupervised samples. Such a flat-

tening is consistent with the generative hypothesis discussed above. The flattening of learning

curves might be a result of an attempt for not completely abandoning the initial hypothesis about

the category boundary suggested by supervised information, but trying to incorporate it into the

representation favored by unsupervised samples by increasing the variance of the distribution

of categories in the learners’ internal representation.

The failure of finding evidence of SSL in McDonnell et al.’s (2012) study (See section 1.1.3)

might also be explained, or at least re-framed in light of the evidence presented above. The dis-

tribution of stimuli used in their study – similarly to ours – allowed for the inference of multiple

category boundaries consistent with the distribution of the data. The two most frequently used

category boundaries by participants (i.e. the Bimodal (Cardinal, or rather vertical in our case)

and the Two-Dimensional (Diagonal)) are both consistent with the distribution of supervised

and unsupervised samples alike. As in their design supervised samples were interleaved with

unsupervised ones, and they did not have test phases covering a greater area of the stimulus

space that would allow them to retrieve learners’ precise internal representation of the category
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boundaries, it is difficult to quantify the effect of supervised and unsupervised information on

the final representation. Given the generative theory of SSL, they did not fail to find hallmarks

of SSL, since learners’ strategy of categorizing stimuli suggest category boundaries that are

consistent with both supervised and unsupervised information as well.

For a deeper understanding of cognitive processes in work while categorization or acquisi-

tion of categories, I should also investigate the neural mechanisms underlying such processes.

In the upcoming chapter, I will present a study where I used EEG, a non-invasive, widely ap-

plied method for recording neural activity in the brain while teaching participants about novel

visual categories.
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Chapter 4

Neural correlates of emerging

representations of novel categories

4.1 Introduction

Two different domains of neural activity most commonly studied with EEG are event-related

potentials (ERP) and changes in ongoing neural oscillations. ERPs are neural responses that are

directly elicited by some sensory, motor or cognitive event, stimulus (Luck, 2005). Frequency

analysis is concerned with the changes in ongoing neural oscillatory activity in response to

an event. A common way of frequency analyses is to define and quantify the magnitude of

synchronization or desynchronization of oscillatory activities of neural ensembles (Sanei and

Chambers, 2007). Neurons’ coherent electrical activity in a neural ensemble can increase (they

synchronize their firing patterns) or decrease (desynchronize) locally as a response to incoming

stimulation. The pattern of rhythmic activity across neurons defines the frequency band, in

which neurons oscillate. One of the most commonly studied frequency bands is the alpha band,
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where neuron ensembles oscillate at around 8-12Hz. In this chapter, I am presenting a study on

neural correlates of the ongoing acquisition of novel categories.

For an investigation of internal representation of categories, I needed a neural signal that

differentially responded to separate categories. For the sake of simplicity, I chose to work with

only two categories at once. To draw general conclusions about categorization, I looked for a

neural signal that was modality- and feature-independent as much as possible. These neural

responses would be most likely modulated by the modality- and feature-independent attributes

of the investigated categories. Such an attribute of a category could be its occurrence probab-

ility. Fortunately, both in the domain of event-related potentials and frequency analysis, there

are neural signals that are sensitive to frequency of occurrence. The P300 ERP, alpha band

ERD and theta band ERS are all sensitive to frequency differences between alternating stimuli

(Sochurková, Brázdil, Jurák and Rektor, 2006; Yordanova and Kolev, 1998a; Yordanova, Kolev

and Polich, 2001; Peng, Hi, Zhang and Hu, 2012; Klimesch, 1999). All three neural signatures

are widely investigated, they can be elicited by stimuli from many different modalities (Peng,

Hi, Zhang and Hu, 2012; Peng, Hu, Mao and Babiloni, 2015). In addition, the same paradigm,

called the oddball paradigm is used to establish frequency differences between stimuli or cat-

egories in studies involving P3 ERP and power changes in different frequency bands, and their

relationship is also investigated (Sochurková et al., 2006; Yordanova and Kolev, 1998a; Harper,

Malone and Iacono, 2017; Yordanova, Kolev and Polich, 2001; Peng et al., 2015).

4.1.1 The oddball paradigm

The oddball paradigm is an experimental research design that was first used by Squires, Squires

and Hillyard (1975) to investigate ERPs. The most essential feature of the paradigm is the al-
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ternating sequence of two stimuli where one of the stimuli has much less appearance probability

than the other. The relative frequencies of the rare and frequent elements are typically 0.2 and

0.8, though it is possible to elicit similar effects with less articulated frequency differences (e.g.

(Parise et al., 2018)). The paradigm has been adapted to diverse sensory modalities. Auditory

stimuli are usually two different tones of different frequencies (e.g. 500 and 1000Hz), visual

stimuli might be two different shapes (e.g. a circle and a triangle), somatosensory and nox-

ious stimulation can be electric pulses of different, well distinguishable intensities (Peng et al.,

2012).

More importantly for my current goal, frequency differences can also be created "semantic-

ally", by grouping different number of stimuli, each with the same appearance frequency to-

gether. One group might contain 3-4 times more elements than the other one. Once a semantic

bound (category) is formed across the grouped stimuli, even though the appearance probability

of each individual element is the same, the relative frequency of the category containing more

elements will be higher (3-4 times more in the current example) than the other’s.

Using this version of the oddball paradigm, Parise et al. (2018) grouped four objects (fork,

spoon, knife, hammer) as stimuli with the same appearance probability across objects, though

conceptually the fork, knife and spoon belong to the same category of CUTLERY. Even though

none of the four objects were shown more frequently than the others, participants evidently

grouped CUTLERY into one category, which was reflected by the neural signals, as both in

ERPs and oscillatory power changed their neural signatures typical for the frequent stimuli in

the oddball paradigm. In the case of novel stimuli, substantial differences in neural response can

only be expected though, if separate representations are formed of the newly acquired categories

(Parise et al., 2018).
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The oddball effect (significantly different response to rare stimuli than to frequent ones) can

be observed in pupil dilation (Kamp and Donchin, 2015; Liao, Yoneya, Kidani, Kashino and

Furukawa, 2016), subjective perception of duration (Schindel, Rowlands and Arnold, 2011) as

well as in differences of neural responses of the P3 ERP and in changes of power in different

frequency bands.

4.1.2 The P300 ERP

The P300 event-related potential is a neural response most commonly investigated in an oddball

paradigm and elicited by the stimulus approximately 300ms after its presentation. The P3 is a

positive-going amplitude in the EEG signal that has two components differing in latency and

that are elicited by different stimulus characteristics. The P3a, or novelty P3 is an earlier com-

ponent that results in higher amplitude to novel, surprising stimuli over frontal or central sites

with a peak latency around 250-280 ms, signaling attention orientation towards task-relevant or

novel stimuli (Harper, Malone and Iacono, 2017).

In contrast, the target P3 or P3b component peaks later as a result of stimulation by task-

relevant, rare target stimuli, and it reflects categorization and context updating. The latency

of P3b varies between 250-500ms, and it is more prominent at parietal areas (Polich, 2007;

Harper, Malone and Iacono, 2017). To elicit a P3b, the participant must be engaged in some

sort of task that requires them to react to incoming stimuli. For example, an auditory oddball

only elicits a P3 response if the stimulus is presented at the attended ear (Picton, 1992). It is not

only attention that influences the occurrence of P3. Since it is sensitive to workload (Donchin,

1981), it is possible to habituate P3, and on the long run, to decrease the neural response even

to rare stimuli (Kok, 2001). In addition, as the task gets easier – for example, as a result of
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learning –, the amplitude of the P3 will get smaller (Picton, 1992). Based on these findings,

many interpret the P3 as a signal of the degree of top-down cognitive attentional involvement in

a task (Debener, Kranczioch, Herrmann and Engel, 2002).

Once elicited, the P3 amplitude varies with the improbability of the stimulus. It is not only

the overall relative frequency of the rare and frequent elements that modulates P3 amplitude, but

also within-experiment temporal aspects of stimulus presentations. Increased temporal delay

between the appearance of two rare elements results in higher P3 response amplitude. The

latency of maximum peak can also vary, and it is modulated by the difficulty of the task. Its

peak amplitude is around 300ms after stimulus presentation only if the task requires a simple

discrimination decision. The more cognitive effort is required for solving a task, the later the

maximum amplitude is expected. Crucially, motor task demands do not affect P3, it depends

mainly on perceptual resources (Picton, 1992).

4.1.3 The alpha ERD

Stimulus-evoked and ongoing neural oscillations are both hypothesized to be influencing in-

formation processing in the brain (Engel, Fries and Singer, 2001). For example, the phase of

ongoing EEG activity can hinder or support the processing of incoming information (Van Rul-

len, Busch, Drewes and Dubois, 2011), or event-related modulation (increasing or decreasing

synchrony of neural firing) of ongoing oscillation can mediate the activation of different areas

involved in information processing (Klimesch, Sauseng and Hanslmayr, 2007). In my study, I

am focusing only on event-related changes in the alpha power, more specifically on deychron-

ization in the alpha band.

Alpha ERD is a decrease in the amplitude of neural activity in the alpha frequency band
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(7.5-12.5 Hz) as a response to incoming stimulation (Klimesch, 1999). There are alpha systems

suggested in the brain that control and influence changes in neural responses in the alpha band,

and as a result mediate the processing of incoming information (Kolev, Yordanova, Schürmann

and Batar, 1999). Similar to P3, alpha ERD is mostly considered to be a reflection of controlled

attention allocation and memory updating that can be achieved by selective inhibition of unne-

cessary areas and timing of ongoing oscillation (Klimesch, Doppelmayr, Russegger, Pachinger

and Schwaiger, 1998; Klimesch, 2012; Keller, Payne and Sekuler, 2017). According to the

inhibition timing hypothesis of alpha oscillations, strong alpha power reflects the inhibition of

areas that are not used in solving the current task or not involved in processing the incoming

information. Desynchronization in the alpha band, in turn, aids processes that are needed for

the current task (Klimesch, Sauseng and Hanslmayr, 2007). As a result of learning and prac-

tice, the system will know what processes to inhibit or aid for a better task performance, and

the dynamics of synchronization and desynchronization can change throughout an experimental

session (Bays, Visscher, Le Dantec and Seitz, 2015).

Desynchronization in the alpha band is not an all-or-none response. Spatial, temporal, fre-

quency and power differences can be linked to different features of the task and stimuli. Dif-

ferent frequency bands within the alpha range seem to reflect different cognitive processes.

Upper alpha ranges (above 10 Hz) are associated with the processing of task specific, sens-

ory semantic information, as well as controlling knowledge access and semantic (long-term

memory) update. Meanwhile, desynchronization in the lower alpha band (below 10 Hz) seem

to reflect attentional processes (Klimesch et al., 1998; Klimesch, Doppelmayr and Hanslmayr,

2006). Task-specific, higher alpha ERD responses are most prominent in task-specific areas

topographically, while lower alpha responses are topographically more widespread and mostly
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reflect basic attentional processes (Peng et al., 2015). Similar to the latency of P3 ERP, the

magnitude of alpha ERD reflects the amount of mental effort required by the task (Sutoh, Yabe,

Sato, Hiruma and Kaneko, 2000). It is also sensitive to the frequency or surprise value of in-

coming stimuli: it is more articulate after the presentation of rare stimuli than after frequent

stimuli. As a result, alpha ERDs can also be investigated using the oddball paradigm just like

P3 ERPs (Peng et al., 2015)(Vázquez-Marrufo, Galvao-Carmona, Lugo, Ruíz-Pena, Guerra and

Ayuso, 2017).

4.1.4 The theta ERS

Theta (4-7.5 Hz in humans) is the dominant rhythm in the hippocampus of lower mammals,

and it is mostly investigated in the hippocampus of humans as well (Klimesch, 1999). As

a result, the function and role of human cortical theta responses in cognitive processes is less

clear, though its involvement in cortico-hippocampal interaction seems to be supported by many

studies (Keller, Payne and Sekuler, 2017; Basar, Basar-Eroglu, Karakas and Schurmann, 2001).

In the cortex, theta ERS is found to be a common response for a variety of tasks involving

working memory, especially memory retrieval and cognitive control (Cavanagh and Frank,

2014; Klimesch, Doppelmayr and Hanslmayr, 2006). It is hypothesized to reflect mainly nov-

elty detection, and to be involved in top-down control of memory encoding, especially of epis-

odic memory. Intensity of theta ERS can be modulated by attentional demands, task difficulty,

and cognitive load – similar to alpha ERD. However, while alpha desynchronizes, theta syn-

chronizes as a response to incoming stimuli under similar circumstances (Klimesch, 1999).

Theta response is also modulated by the novelty or surprise effect of the stimulus. Investig-

ating it with and oddball paradigm (either auditory or visual), theta ERS is significantly more

82



enhanced for infrequent or unexpected, novel stimuli.

We need to distinguish between early (0-300ms after stimulus onset) and late (between

300-600ms after stimulus onset) theta responses (Yordanova and Kolev, 1998b). Early theta

responses are assumed to be modality specific as they are most prominent over the vertex and

occipital areas for auditory and visual stimulation, respectively. At frontal and parietal areas,

it is the most enhanced for expected, predictable stimuli. As opposed to this, late theta seems

to be modality independent, and it is topographically restricted mainly to midfrontal scalp re-

gions.(Harper, Malone and Iacono, 2017) Also, late but not early theta gives more articulate

responses for oddball as opposed to predictable or passive stimuli. The above listed attributes

are primarily true for late theta responses.

4.1.5 P3 ERP, Alpha ERD and theta ERS

Neural responses in a variety of frequency bands play a role in diverse cognitive processes

like attention, learning or memory update involving many sensory and cognitive levels (Basar

et al., 2001). By now, some similarities between the processes associated with P3 ERP, upper

alpha ERD and late theta ERS might be apparent. They are all modality independent (but only

in reaction to target stimuli – alpha ERD showed modality-specific responses for non-target

stimuli), they reflect task-related high cognitive activation and attention, they are involved in

similar processes, i.e. categorization or memory updating, and they are all sensitive to stimulus

frequency reflected by the more articulated responses for rare stimuli (Sochurková et al., 2006;

Peng et al., 2012). All these similar characteristics of the above discussed EEG responses justify

their involvement in the present study addressing neural correlates of the acquisition of novel

categories.
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4.1.6 Goal of the present study

As discussed above, creating appearance frequency differences between categories or stimuli

in an EEG experiment allows one to elicit differential neural responses for stimuli from one

category and the other. In such studies, categories are most commonly defined by one target

and one non-target stimulus; one target vs many non-target stimuli (Azizian, Freitas, Watson

and Squires, 2006b; Azizian, Freitas, Parvaz and Squires, 2006a); discrete stimuli that belong

to categories already familiar to the observer; or novel, discrete stimuli that participants are

excessively trained to learn to categorize before the EEG recording (Parise et al., 2018).

There are, however, two important aspects of categorization that cannot be addressed by

experimental setups and stimulus sets commonly used in previous studies. First, the neural

correlates of the ongoing acquisition of categories are not accounted for, and second, it is still

unknown how the within-category structure modulates neural responses. Studies by Azizian

et al. (2006b) and Azizian et al. (2006a) might serve as a good starting point to investigate these

issues. In their study, the authors used one target stimulus and created the non-targets in a way

that they differed from the target in different degrees in similarity. According to their results,

P3 ERP was sensitive to perceptual similarity of non-targets to the target stimulus, and more

perceptual similarity predicted more articulate P3 responses. Nevertheless, it is still unknown if

this result holds for scenarios where the similarity is established between two categories (more

than one element composing each category), and for stimulus sets, where differences between

targets and non-targets or between frequent and rare categories are less perceptually prominent.

In addition to these issues, I also asked if alpha ERD and theta ERS showed similar patterns of

modulation to those of P3 ERP in such complex stimulus environments.

In my study, I altered the commonly used oddball paradigm in a way that it allowed me to
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investigate the following two major questions:

1. Is the ongoing acquisition of categories traceable by neural responses recorded with

EEG?

If P3, alpha ERD or theta ERS responses reliably reflected (for instance by a gradual

emergence or more and more articulated differences in response to rare and frequent cat-

egory elements) the process of category acquisition, they might be a good tool for tracing

more complex or less transparent learning scenarios such as implicit learning.

To be able to track the emergence of internal representations, I need to make participants

learn to categorize novel stimuli and start the EEG recording already at the very first trial

of this learning.

2. Can any of these neural responses provide us with more sophisticated information about

the developed category representation other than plain category membership?

Finding evidence for a modulation of neural responses by different aspects of the repres-

entation – like uncertainty or within-category structure – could provide a tool for mapping

internal representations of categories, as well as refine the theory on the function of each

of the neural signals involved.

To see how the structure of the category influences neural responses – if at all – I need

stimuli varying on continuous feature dimensions, so that I can have response measure-

ments to stimuli that are more or less typical to the category considered.
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4.2 Methods

4.2.1 Participants

Thirty-one right handed subjects [18 females, mean age = 24 years] gave written informed

consent and completed the experiment. Data from 6 subjects were excluded from analysis due

to excessive EEG artifacts.

4.2.2 Stimuli

Following the above outlined goals, I needed stimuli that varied on a continuous dimension to

ensure within-category structural differences among stimuli. I also needed the categorization

task to be somewhat difficult so that participants could not learn the category boundary immedi-

ately after a couple of trials, hence, the gradual emergence of category representations could be

traced. For this reason, I needed novel stimuli, for which any priors on categories, and hence,

priors on category boundaries would not bias the emerging representation unpredictably. In

addition, the stimuli had to vary along more than one clearly identifiable dimension to make the

task less trivial.

I used the parametrically tunable stimuli created by Op de Beeck, Wagemans and Vogels

(2001) (See 4.1). These shapes varied continuously along integral stimulus dimensions between

the extremes of the range. In order to use the oddball paradigm, I needed unequal relative fre-

quencies of the two categories. There are two common ways of establishing frequency differ-

ences between two categories. One can either have equal number of elements in both categories

and increase the appearance probability of elements in one category, or the numerosity of stim-

uli in one of the categories can be increased while the appearance probability of each element
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could stay identical. In the first case, an enhanced neural responses can be interpreted as a

surprise effect due to the fact that stimuli in the rare category are less familiar, less expected.

This is a response that does not require one to form an internal representation of the stimuli

that would group a subset of them into one category and the rest in another. In the meantime

if one establishes unequal appearance probabilities between categories by shifting the category

boundary on the stimulus range to include less elements into the category intended to be rare,

but the relative frequency of all the stimuli are the same, more articulated neural response to

samples from the rare category would unequivocally signal the presence of emerged internal

representation of the categories, as frequency differences are only interpretable on the category

but not the stimulus level. Following the latter strategy, I sampled 12 stimuli from the generated

stimulus space out of which 3 belonged to one category and 9 to another. (Fig. 4.1) Stimuli

were presented in 360x250 pixels in size.

a b

Figure 4.1: a) Stimulus space with sampled stimuli used in the study. b) Stimuli comprising
the frequent (blue) and the infrequent (red) categories. Stimulus groups in the frequent cat-
egory are defined by participants categorization behavior. Worse performance implying more
similarity to the other, infrequent category.

Differences in neural response reflecting within-category structure is expected to be appar-

ent across three stimulus groups in the frequent category, where the three groups are defined

by stimuli that are gradually diverge in similarity from stimuli in the rare category. All three
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within-category stimulus groups are consisted of 3 stimuli so that they could be compared to

other within-category groups or to the rare category with equal sample size. Stimuli consisting

the rare and frequent categories were counterbalanced across the study.

4.2.3 Procedure

The experiment was created and presented with Matlab 2014a using Psychophysics Matlab

toolbox. Participants were seated in a dimly lit room in front of a computer screen. Accord-

ing to the experimental instructions, they were about to learn classifying two deep sea animal

species called by made-up labels also used in similar studies: Bitye and Tacok, or Dax and

Wug for English speaking participants (Parise et al., 2018). After the instructions, participants

were provided 2 random examples from both categories with the corresponding labels. Later,

they were asked to classify each figure they saw. Stimuli appeared at the center of the screen

for 800ms following a fixation cross of random duration between 400-600ms. As the stimuli

disappeared, a response screen followed with the labels prompted on the left and right side of

the screen. Participants made their category decision with pressing left and right side buttons

on a gamepad. Correct classification decisions were followed by a green circle while a red

cross signalled incorrect responses for 500ms. In addition to choosing the category, participants

were asked to provide a confidence judgments after each of their responses on a scale from 0 to

100%.

The experiment consisted of 3 experimental blocks separated by breaks of a few minutes.

In each block the 12 stimuli were presented 20 times in random order.
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EEG recording and analysis

High-density, continuous EEG was recorded using Hydrocel Geodesic Sensor Nets (Elec-

trical Geodesics Inc., Eugene, OR, USA) including 128 channels equally distributed on the

scalp, referenced to the vertex (Cz). The sampling rate was 500 Hz with a low-pass filter of 200

Hz.

EEG was band-pass filtered between 0.3 and 30 Hz. Continuous data were segmented into

12 groups: 4 stimulus groups (Freq1, Freq2, Freq3 and Infreq) × 3 blocks of the experiment

(Block1, Block2, Block3). Segments were defined 600 ms before and 1200 ms after stimulus

onset. Epochs were classified as artifacts whenever the average amplitude of a 80 ms sliding

window exceeded 55 µV at horizontal EOG channels, 140 µV at vertical EOG channels, and

80 µV at any other channel. Bad channels were automatically interpolated in epochs in which ≤

10% of the channels contained artifacts; epochs in which > 10% of the channels within a -200

and 800 ms window around stimulus onset contained artifacts were automatically rejected.

Wavelets

Retained segments were imported into Matlab using EEGLAB (v9.0.5.6b) and re-referenced

to average reference. After referencing, epochs were convoluted by complex Morlet wavelets

within the frequency band of 5-15 Hz with 1 Hz resolution using a custom-made script collec-

tion, WTools. Epochs then were baseline corrected to a 200 ms interval immediately preceding

stimulus onset. I defined sparate ROIs for expected upper alpha ERD and theta ERS, as based on

previous literature they are expected to be most prominent at parietal (Klimesch, Doppelmayr

and Hanslmayr, 2006; Peng et al., 2012; Yordanova and Kolev, 1998a; Yordanova, Kolev and

Polich, 2001) and midfrontal (Harper, Malone and Iacono, 2017; Yordanova and Kolev, 1998b)
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regions, respectively. All epochs were baseline corrected to a 200 ms long interval immediately

preceding the onset of the stimulus. Absolute values of complex coefficients were computed at

the ROIs within the time window of 300-800 ms(Parise et al., 2018) and 200-600 ms(Harper,

Malone and Iacono, 2017) and frequency range of 8-12 Hz and 3-8 Hz for alpha ERD and theta

ERS, respectively.

Figure 4.2: ROIs a) and c) and time window with frequency band b) and d) defined for α
(upper) and θ (lower) response analysis, respectively.

ERPs

Epochs were baseline corrected to the 200 ms interval preceding stimulus onset. Bilateral,

symmetric ROIs were defined parietally following Parise et al. (2018). P300 ERDs were quan-

tified as mean amplitude within the time window of 250 and 500 ms after stimulus onset.
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4.3 Results

4.3.1 Behavioral results

Participants successfully acquired the categories by the end of the experiment. Average per-

formance across stimulus groups in Part3 was 96.6%. A gradual increase could be observed

part-by-part throughout the experiment. Improvement in behavioral performance was closely

followed by an increase in subjective confidence across the three experimental blocks. (Fig. 4.3)

However, the within-category performance in the frequent category was not uniform. [F (2, 48) =

14.34,p < 0.001,η2 = .37] Categorization performance for stimuli in stimulus group Freq3

was significantly worse than in Freq1 [t(24) = 4.11,p < 0.001,d = 7.3] or Freq2 [t(24) =

3.58,p < 0.01,d = 2.2]. These significant differences also held between Freq1 [t(24) = 5.37,p <

0.001,d = 11.7], Freq2 [t(24) = 4.74,p < 0.001,d = 3.4] and the Infreq group. There were no

significant differences between stimulus groups Freq1 and Freq2 [t(24) = 1.95,p = .06,d = .37]

or between Freq3 and Infreq [t(24) = 1.91,p = .67,d = .47].

The same pattern of differences could be observed in the case of decision confidence. There

were significant differences between stimulus groups Freq1, Freq2 and Freq3; and between

stimulus groups Freq1, Freq2 and Infreq. However, there was no significant difference either

between Freq1 and Freq2 or between Freq3 and Infreq in terms of subjective decision confid-

ence.
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Figure 4.3: Behavioral results of the study: changes in categorization performance (left) and
subjective decision confidence (right) as a function of practice – the number of completed
blocks – and stimulus groups.

4.3.2 Neural results

4.3.2.1 P300 ERP

A repeated measures two-way ANOVA including the four Stimulus groups and the three Blocks

as factors did not reveal significant main effect of Stimulus groups [F (3, 72) = .82,p = .48, η2 =

.03], nor an interaction between the factors [F (6, 114) = .35,p = .9, η2 = .01]. However, I

found a significant main effect of Block [F (2, 48) = 3.88,p < 0.05,η2 = .13]. Post-hoc t-tests

indicated a significant increases in P3 ERD amplitude from Block2 to Block3 [t(24) = 3.18,p <

.01,d = .18].
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Figure 4.4: Changes in P300 ERP amplitude across the three experimental blocks. Gray area
signals the time window of analysis.

4.3.2.2 α ERD

Expected α ERD responses on the left hemisphere developed gradually following the consolid-

ation of categories. In a repeated measures two-way ANOVA, I found a significant interaction

between the four stimulus groups and the three blocks in the experiment [F (6, 144) = 2.96,p <

.01, η2 = .12]. Apart from this interaction, there was also a significant main effect of stimulus

93



groups [F (3, 72) = 3.92,p < .05, η2 = .13]. While in Block1 α power was almost the same

in all four stimulus groups, by Block3 significant α ERD differences emerge between stimulus

groups on the left hemisphere.

The pattern of these differences closely followed the pattern of behavioral performance of

the subjects. Significant differences were found between Freq3 and Freq1 [t(24) = 2.56,p <

.05,d = .39] as well as Freq2 [t(24) = 2.7,p < .05,d = .39] groups, ad similarly between

Infreq and Freq1 [t(24) = 2.66,p < .05,d = .45] or Freq2 [t(24) = 2.77,p < .05,d = .38]

stimulus groups. There was no significant difference, however, between α responses for Freq1

and Freq2 [t(24) = .45,p = .6,d = .08] or Freq3 and Infreq [t(24) = .3,p = .7,d = .03] groups.

Figure 4.5: Changes in the desynchronization patterns in the α band as a function of practice
(number of blocks) and stimulus groups on the left and right hemispheres. Plot depicts mean
measured power in the α band with SEM as error bars.
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4.3.2.3 θ ERS

The θ responses were markedly different from α ERD responses. Results of a repeated measures

two-way ANOVA on the effects of stimulus groups and blocks showed no significant interac-

tion, but indicated a main effect of stimulus groups. [F (3, 72) = 5.25,p < .01, η2 = .15]

By Block3, significant θ differences emerged between the Infreq group and stimulus groups

Freq1 [t(24) = 3.57,p < .01,d = .77], Freq2 [t(24) = 3.79,p < .01,d = .75] and Freq3 [t(24) =

2.39,p < .05,d = .42]. Unlike in the case of α responses, θ ERS for stimulus groups within

the frequent category gradually increased in proportion to the proximity of the stimulus group

to the category boundary, but this difference did not reach significance. [F (2, 48) = 2.028,p =

.14, η2 = .08]

Figure 4.6: Changes in synchronization patterns in the θ band as a function of practice (num-
ber of blocks) and stimulus groups. Plot depicts mean measured power in the θ band with
SEM as error bars.
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4.4 Discussion

In my study, I created a modified version of a widely used paradigm to test if commonly in-

vestigated neural correlates of categorization behavior (P300 ERP, α ERD and θ ERS) could be

meaningfully interpreted in more complex, more natural scenarios.

Participants gradually built a stable representation about the categories block by block

throughout the experiment. Categorization performance was not ceiling for all stimulus groups

even in Block3. Stimuli in the Infreq and the Freq3 stimulus groups that was the closest to the

category boundary proved to be significantly more difficult for participants to categorize than

the rest of the stimuli. This conclusion is supported by the significantly lower confidence for

these stimulus groups. Performance and confidence differences between these two groups were

not significant, they seemed to be equally difficult.

Acquisition of the categories across blocks was followed by the gradually increasing amp-

litude of P300 ERPs. Significant P3 ERPs did not emerge between any of the stimulus groups

even by the last block. There are two possible explanations for the lack of differences. First,

it is possible that more pronounced frequency differences are necessary to elicit P3 differences

in such complex tasks. Usual frequency differences in oddball paradigms are 1:9 or 2:8 (Yord-

anova and Kolev, 1998b; Yordanova, Kolev and Polich, 2001; Yordanova and Kolev, 1998a;

Sochurková et al., 2006; Peng et al., 2015; Harper, Malone and Iacono, 2017), etc., and as

indicated above, the amplitude of P3 ERP can be modulated by frequency differences between

expected and infrequent stimuli. Another possible explanation is that P3 is a neural signal that

needs a longer consolidation period of the acquired knowledge. Parise et al. (2018) in their
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study during a training phase taught participants two categories consisting of 3-3 novel objects.

A test phase followed the training, where participants had to categorize the elements of the re-

cently acquired categories. Crucially, one category contained all 3 elements practiced during the

training phase, while in the other only one member of the other category appeared with equal

probability to any of the first category’s 3 elements. This created a frequency oddball with a

1:3 ratio. The authors found no P3 differences for the newly acquired categories, while in a

previous experiment they managed to elicit significant P3 ERD differences presenting familiar

objects with the same frequency ratio.

As opposed to P300 ERP, significant α ERDs by Block3 indicated that α ERD was a neural

response sensitive even to newly acquired categories. In addition, its gradual emergence makes

it a useful tool for tracking the emergence of novel categories. Since the oddball effect can only

be interpreted on the category, but not the stimulus level, forming internal representations of the

categories is inevitable for eliciting such a difference in neural response. Apart from its gradual

emergence, α ERD is not an all-or-none response to different categories. Since the pattern of

desynchronization closely followed behavioral categorization performance, we conclude that

α ERD is modulated by task difficulty. Crucially, this modulation does not only reflect task

difficulty, as in this case, we should have observed the same pattern already in Block1 that

we found in Block3. To support this interpretation, I ran an additional analysis by calculating

categorization performance and average α power for each individual stimulus in each block.

To correct for large individual differences, I normalized both measures for each participant. I

found a strong and significant correlation between performance and alpha responses in Block3

[r(10) = .64,p < .05].
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Figure 4.7: Correlation between normalized categorization performance and mean α power
for the 12 stimuli used in the experiment. Correlations were calculated for each block separ-
ately.

This finding leads to the conclusion that α ERD is a neural signal that is suitable for tracking

the ongoing emergence of novel categories, and once the categories are consolidated, it reliably

reflects the subjective difficulty of the task. This conclusion is also supported by the previous

literature discussed above.

Similar to α ERD, θ ERS responses emerged gradually throughout the experiment, follow-

ing the course of learning. Significant differences in θ ERS between members of the frequent

and infrequent categories clearly signaled the acquisition of categories. In addition, θ ERS

seemed to be sensitive to the strength of category membership. Within the frequent category, θ

synchronization increased with the proximity of stimulus groups to the category boundary. As

stimulus groups showed less similarity to the stimulus group containing the most characteristic

stimuli of the frequent category, neural responses tended to be more similar to the ones elicited

by the other, infrequent category. Again, the emergence of such a pattern requires the initial

consolidation of category representation so that similarity within- and across categories could

be interpreted. This interpretation can also be based on previous literature implying that θ ERS

is modulated by the novelty or surprise value of a stimulus. The more similar a stimulus is to a
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surprising stimulus, the easier it is to confuse one to another, hence, the elicited neural response

might also be more similar for the two stimuli

To sum up, just like α ERD, θ ERS emerges gradually following the course of learning, and

once the category representations are consolidated, it reflects the strength of within-category

membership.

Based on the results of the presented study, we can conclude that P300 ERP is not a useful

signal for tracking ongoing emergence of category representations of members with continu-

ously varying feature dimensions. α ERD and θ ERS, however not only follow the process of

category acquisition, but they respond to different, but equally important aspects of categor-

ization. α ERD is modulated by subjective task difficulty, and θ ERS reflects the strength of

category membership.

In this study, I have demonstrated that commonly investigated neural signals associated with

the process of categorization can meaningfully respond to more complex, more natural category

structures than the ones previously used in similar studies. These results provide an implicit tool

for mapping the emergence, and once consolidated, the structure of category representations in

humans. Also, these results support and possibly refine previous hypotheses on the functions of

the investigated neural responses.
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Chapter 5

General Discussion

In the first part of this thesis, I presented two behavioral studies, each addressing important but

surprisingly neglected questions in the line of research on the acquisition of novel categories:

whether humans use generative vs. discriminative learning and how they combine unsupervised

and supervised information during semi-supervised learning. In the last part of the thesis, I in-

vestigated neural signatures of the emergence of novel categories during learning. The results

of these studies fit into a coherent view on how information is acquired and represented in the

human brain.

5.1 Implications of presented findings

5.1.1 Generative learning

Chapter 2 provided evidence that humans use implicit, automatic generative learning even un-

der circumstances that strongly favor an easier and simpler discriminative learning approach.
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The importance of this issue can hardly be overstated. Due to the nature of behavioral exper-

imentation, human behavior is typically investigated scientifically under very constrained and

simplified conditions. The result of this practice is a strong overemphasis on humans’ ability

to solve very specific problems resulting in a distortion of our understanding about what the

fundamental problem is that living creatures including humans face on a daily basis. Spectac-

ular and apparently idiosyncratic performances in more complex learning situations have been

dismissed as examples that should be considered at a later time when the "basic" learning be-

havior is clarified based on features of learning identified in simple categorization tasks. As

a consequence, discriminative performance has not been interpreted as a special version of a

more complex learning apparatus, but as a true building block of human learning. In contrast,

the conclusions of Chapter 2 suggest that despite its "higher initial expense", the generative ap-

proach is dominant in human learning and solving highly specialized tasks in a discriminative

manner builds organically on this basis.

These results also scaffold the necessary predictions and the derived interpretation of the

results in the SSL study in Chapter 3. Although, there exist two previous studies suggesting

that generative learning is a necessary precursor to SSL (Kalish, Zhu and Rogers, 2015; Gibson

et al., 2015), these suggestions remained only hypotheses given the lack of definite evidence

supporting these suggestions. Presented results provide evidence that this theoretically con-

ceived prerequisite condition is satisfied, indeed.

Furthermore, the present results of Chapter 2 have two important implications to past and

future studies in SSL, respectively. Considering previous studies, if our conclusion, the gener-

ative hypothesis saying that humans always learn generatively is correct, it has the potential and

obligation to explain so far open questions and correct mistaken conclusions drawn based on
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the heavy bias on a simple discriminative interpretation of learning (see Section 3.4). Consid-

ering future studies, if experiments are designed so that they provide learners with multitude of

incoming information, this would allow future research to proceed to consider more important

questions beyond the necessary first step of whether learners integrate supervised and unsuper-

vised information, and focus on the true nature of this integration process.

5.1.2 Semi-supervised learning

As a first step on the path opened by results in Chapter 2, Chapter 3 presented the first integrated

study on examining the effects of both supervised and unsupervised information on the already

existing internal representation of categories. I found that both supervised and unsupervised

information get integrated into the final representation. Importantly, although information de-

livered in a supervised fashion is considered to have a stronger impact on learning than what is

learned in an unsupervised manner, supervised information will not overwrite, only modify the

information stored in the representation to the extent that is compatible with both old and new

information. This is consistent with the generative hypothesis of category learning saying that

even supervised learning is essentially unsupervised and thus everything is added up the same

way in the resulting representation instead of canceling out.

In addition, this study provides the first definite evidence of a true update of the internal

representation as a result of SSL signaled by the re-assignment of certain stimuli into a different

category. Although, there exists an earlier attempt for achieving this by Kalish, Zhu and Rogers

(2015), the results in their study cannot be generalized to the entire population due to a signi-

ficant developmental component related to the reported effects. Specifically, the study found

that only young children could re-categorize certain stimulus samples, while older participants
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failed to update their representations in a way that would signal the incorporation of both super-

vised and unsupervised information. However, this would suggest that the ability of combining

the two types of learning is lost by the time learners arrive to adulthood. In contrast, I suggest

that such a combination not only possible in young adults, but it is an essential feature of all

human learning.

5.1.3 Neural correlates of category acquisition

Chapter 4 investigated another aspect of complex learning processes, the neural correlates of

categorization. My goal with this study was to build on the vast literature of neural correlates

(P300 ERP, α ERD and θ ERS), which typically investigated the issue in very simple examples

of categorization using a few number of discrete stimuli, and elevate the complexity of the

investigated setup to the level of the other two chapters and hence to approximate more nat-

ural learning processes. Using multiple samples varying on a continuous feature dimension,

separated into two distinct groups allowed for an investigation of not only between category

differences, but also for within-category structures (θ ERS), task difficulty (α ERD) and the

emergence of the internal representation of the categories being acquired (both).

Based on my results, future studies might use the investigated neural correlates as impli-

cit measures of different descriptive parameters of the internal representation (within-category

structure) and the learning environment (task difficulty).

Continuous EEG recording throughout the ongoing acquisition of categories also has im-

portant implications to the research of the investigated neural signals. Gradual articulation of

α ERD and θ ERS implies that these signals reflect cognitive mechanisms that are involved

from the very beginning of the learning process. The lack of P300 ERP modulation both in the
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present study and in the one by Parise et al. (2018) for recently acquired, discrete categories

suggest that eliciting P300 ERP requires a strong consolidation of categories, hence, it might

be involved in cognitive processes related to the processing of incoming information of highly

familiar categories.

This lack of significant modulation of P300 ERP might also be relevant to the line of re-

search addressing the causal relationship between – or at least a common modulator of – α

ERD and P300 ERP (Peng et al., 2012; Sochurková et al., 2006; Yordanova and Kolev, 1998a;

Yordanova, Kolev and Polich, 2001). Using the canonical oddball paradigm with few, highly

discrete stimuli, researchers found similar response patterns of the two neural signals. Source

and connectivity analysis suggested common neural generators for these neural responses (Peng

et al., 2012). The lack of significant P300 ERP modulation, however might put previous results

on the suggested connectivity into a new perspective. Presented findings do not refute the ex-

isting results on the currently presumed relationship between α ERD and P300 ERP, but they

amplify the need for refining the presently accepted theory about what they indicate. In ad-

dition, these results confirm and strengthen the proposal that the investigation of these neural

correlates require new experimental designs and stimuli, which better capture human category

learning under natural circumstances.

5.2 Future directions

5.2.1 Generative learning

The fundamental argument running through this thesis is that learning and using generative

models for knowledge acquisition and application is the most suitable method for capturing
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human natural cognition. This argument is based on commonly agreed advantages of generative

models of the environment, such as the fact that learners would be able to solve multiple tasks

using the same, already developed representation about the world/categories. These advantages

are supported by multiple lines of research on the transfer of knowledge about categories across

different aspects of a learning scenario: the environment (Kole, Healy, Fierman and Bourne Jr.,

2010), tasks (Helie and Ashby, 2012), modalities (Wallraven, Bülthoff, Waterkamp, van Dam

and Gaißert, 2013) or categories (Qi, Aggarwal, Rui, Tian, Chang and Huang, 2011). However,

this argument also comes with a number of further consequences that needs to be integrated

in a general framework of human category learning and cognition, in general, to provide a

viable model. Specifically, implementing the computational framework of generative models in

a biologically feasible manner requires adequate solutions for representing and computing with

complex information that encompasses uncertainty (Fiser, Berkes, Orbán and Lengyel, 2010).

There are several proposals how this could be done in the brain (Knill and Pouget, 2004; Pouget,

Beck, Ma and Latham, 2013; Orbán, Berkes, Fiser and Lengyel, 2016), but very few specific

studies that would investigate the consequences and predictions of either of those schemes on

human learning either in the context of categorization or decision making.

A related topic is a different type of generalization, automatic re-calibration across various

tasks. Categories emerge based on perceptual experience, as mentioned above, are influenced

by aspects of the learning scenario. There is also multiple evidence for how categorization (task)

affects the perception of stimuli (Goldstone, 1994; Goldstone, Lippaa and Shiffrin, 2001; Op de

Beeck, Wagemans and Vogels, 2003; Gauthier et al., 2003). However, little is known about how

the initial category representation would change as a result of an additional task. For example,

if participants acquired categories with equal sample sizes, would an additional target detection
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task on the same stimuli with unequal sample sizes (or increased variance in one of them) of

those categories bias the resulting representation about the frequency distribution of previously

learned categories? The generative hypothesis would predict so, since an increased exposure to

elements from one category should alter the model of the entire learning environment to match

expected occurrence probabilities of each category.

The assumption that humans build generative models of their environment, and use these

rich, multidimensional representations to solve different tasks emphasizes the importance of

research on methods, by which more complex and comprehensive models can be built about the

learners’ internal representation. As discussed in Section 2.1.1, the same complex, generative

internal representation can be used in several different ways that are tailored to the task to

be solved at hand. If researchers attempt to retrieve the internal representation only based

on how participants solve a single task, results can be misleading. Therefore, a meaningful

research program on any learning process can be conducted meaningfully only if the nature of

the resulting representation is mapped out to a sufficient degree. Recently, there were several

methods developed for retrieving the complex internal model learners’ build based on incoming

information that can potentially be suitable for this purpose, such as Cognitive Tomography

(Houlsby, Huszár, Ghassemi, Orbán, Wolpert and Lengyel, 2013) or d-MCMCP (Hsu, Martin,

Sanborn and Griffiths, 2019). However, behavioral experimental designs taking advantage of

these methods are still rare, thus, it is imperative that future research put even more emphasis

on using and developing such methods.
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5.2.2 Semi-supervised learning

Since behavioral studies of SSL represent a relatively recent line of research, there are several

relevant aspect of this learning form still virtually unexplored. One of the most important direc-

tions would address the developmental aspect of SSL. Arguably, infant and small children know

less about the world than adults, but it is unclear whether their different performance in various

tasks is simply a result of a difference in knowledge or the method by which stored knowledge

is used. To answer this question, a systematic exploration is required to clarify whether unsu-

pervised and supervised elements of SSL are available throughout the developmental process

and how those elements interact.

From the moment of birth (and likely even before), humans process incoming information

with an attempt to build structured representations about the stream of incoming stimulation.

Previous studies established that non-verbal infants are already able to utilize statistical fea-

tures of the auditory (Saffran, Aslin and Newport, 1996; Saffran, Johnson, Aslin and Newport,

1999) or visual (Fiser and Aslin, 2002) input to extract statistical features that allow them to

efficiently build representations about their environment. Such results imply that from an early

age, humans are prepared to utilize unsupervised information to gain knowledge about their

surroundings. Regarding the supervised component, Csibra and Gergely (2009) argued that

infants are already equipped to receive and efficiently process information from a teacher or a

supervisor. They are ”sensitive to ostensive signals”, ”develop referential expectations in os-

tensive contexts” and are ”biased to interpret ostensive-referential communication as conveying

information that is kind-relevant and generalizable”. Thus the components of SSL seem to be

available from birth.

However, the findings on the interaction between these components are mixed. For example,
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LaTourrette and Waxman (2018) reported that infants were able to perform SSL, but only su-

pervised labels could initiate category formation. An important difference potential responsible

for this superior effect of supervised samples is that in LaTourrette and Waxman (2018)’s study

infants have no access to stimuli from both categories throughout the learning phase, as a result,

they did not have access to perceptual and statistical features that would provide them with the

opportunity to separate two clusters of stimuli in an unsupervised manner. Instead, infants were

trained on multiple samples from one category, and they encountered the sole sample from the

other category only during the test.

In contrast, a different study by Kalish, Zhu and Rogers (2015) using a participant pool

of older children found the opposite result. Younger children tended to assign less weight to

supervised information, and prefer the distribution of the data to determine their final internal

representation of the categories. Meanwhile, older children preferred to be lead by supervised

information in their categorization behavior. These examples highlight the need for additional

systematic research to sort out the apparent controversies between results addressing the devel-

opmental aspects of SSL.

A second, related line of research has to target the effect of pedagogical teaching/learning of

supervised trials. It has been argued by Shafto, Goodman and Griffiths (2014) that learners tend

to infer significantly different hypotheses about the subject to be learned (rule-based, prototype

or causally structured concepts), when they assume the incoming information to be sampled by

a knowledgeable teacher (pedagogical learning) as opposed to the alternative scenario of simple

random sampling, where no such assumption is made. This theory implies that pedagogically

sampled supervised information would have a much stronger effect on the final internal rep-

resentation of concepts than randomly sampled ones. However, a number of questions need
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to be clarified before this implication can be tested. What does pedagogical sampling mean

computationally? Is it just the signalling of pedagogical attempt or a different type of inform-

ation as well? If the latter, do these effects add up or interact? On an objective side of the

same question, (given the same objective – accuracy, speed, efficiency of generalization, etc.),

which are the most informative samples to select when unsupervised data are also available, and

what is theoretically the most beneficial order of presentation of such supervised information

(Khan, Mutlu and Zhu, 2011; Bengio, Louradour, Collobert and Weston, 2009)? Only after

these questions are answered, one can target the issue of how the level of agreement between

supervised and unsupervised information about the structure of concepts modulates the final

internal representation.

Finally, an interesting area of research is the interaction between the observers goals and

utilisation of the knowledge acquired by SSL (i.e. the adaptivity of generalization). The corner-

stone argument of the present thesis is that humans make decisions most of the time based on

sparse information of previous encounters with certain categories, and hence generalization is

the important aspect of human category learning (Segel and Peterson, 2013; Jones, Love and

Maddox, 2005). As discussed in Section 1.1.1, a potential benefit of SSL over supervised learn-

ing is that it allows for a greater level of generalization than supervised training and discrim-

inative learning alone does. Patterson and Kurtz (2018) have already supported this claim in

their study with relational categories. They found that participants were more inclined to more

widely generalize the category knowledge they just acquired to newly observed sample and

link the sample to earlier ones, when the test followed a training with SSL rather than purely

supervised learning. This result is in agreement with numerous earlier observations that the

number of supervised samples negatively correlate with participants’ willingness to generalize
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category information to new samples. It also suggests that the richer representation presumably

developed by the unsupervised component of SSL provides the bridge for making generaliza-

tion through dimensions that were not directly relevant in building the discriminative features

in the supervised component. However, all these observations are tied to the sensory input of

the situation using only categorization as the task/goal component of the setup. It is likely that

similar to the sensory part, the goal/task part of the setup is also a domain where generalization

occurs in the same manner but providing more abstract links for what is "in" and what is "out"

in the new categorization task. Nevertheless, this component is presently under-explored in the

literature.

5.2.3 Neural correlates of categorization

The potentially different sources of generalization also raise the question of how various neural

correlates are linked to these sources. Would the values of these neural signals measured with a

novel stimulus and with a stimulus that is similar to the novel one but was already represented

as a member of an acquired category be similar? The difficulty of answering this question in an

oddball paradigm comes from the fact that the oddity of the new stimulus can come from two

sources. Either because the stimulus is novel, hence it is odd, or because it is coming from the

rare category. Based on previous findings about how α ERD or θ ERS responds to unexpected

stimuli in an oddball paradigm, one might expect the neural responses to infrequent stimuli

to be similar to the ones elicited by members of the infrequent category, irrespective of their

similarity to either the previously learned frequent or infrequent categories. Alternatively, the

generalization of category information could be so strong that the neural responses to the novel

stimulus that is nevertheless interpreted as a members of the frequent category will be defined

110



by the previously established expected frequency. It might also be possible that such novelty

effects would even elicit a P300 ERP response that I failed to find during the acquisition of the

categories in my study.

An important shortcoming of my study related to the above issue is that it cannot disentangle

task difficulty and decision confidence (See similar behavioral patterns at Fig. 4.3 left and right)

during the process of category learning. Detecting this distinction is necessary for answering

whether sensory or categorical factors determine the change in neural signals. Future studies

should aim to address these two factors separately, for instance by imposing noise or reducing

presentation times for different samples ranging across the stimulus space.

Considering the potential of such neural signals to map within-category structures, it would

also be interesting to investigate, whether and how α ERD and θ ERS would reflect the shape

of non-uniform distributions of samples in the internal representation of categories. With such

a knowledge, it would be possible to further distinguish between two alternatives of how con-

ceptual categories and neural signals are related. For example, one possibility is that if the two

categories are defined by non-overlapping Gaussians, the expected probability of the stimuli

would modulate the strength of the investigated neural signals. An alternative prediction is

that only simple proximity to the category boundary matters and it is the sole predictor of the

magnitude of neural responses.
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5.3 Conclusions

In the present thesis, I investigated the nature of human knowledge acquisition through the

paradigm of semi-supervised learning. My results support the idea that humans use a generative

learning strategy in all situations, that labelled and unlabelled information gets continuously

and seamlessly integrated in this framework, and that neural correlates commonly used for the

investigation of categorization in humans have the potential to reflect much more sophisticated

processes relevant to categorization than generally recognized before. These results set the stage

for investigating human learning under more complex and more naturalistic conditions.
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