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COURSE SYLLABUS 

 
VISUAL PERCEPTION AND LEARNING IN THE 

BRAIN  
            
           
Instructor:      József Fiser, Professor 
   Department of Cognitive Science 
   Central European University 
 
Term:    Fall, 2023/24 
Course level:    PhD (2 credits Graded) 
Pre-requisites:     -  
E-learning site:   http://ceulearning.ceu.hu/ 
Time and place:  Wednesday 10:50 – 12:30      Dept. CogSci QS, Room C-503 
 
Course Description 
This course will be built around the contemporary research on vision to give an overview 
of researching cognitive processes in general. First, we will briefly cover the classical 
approaches of low and high-level vision, visual learning, the neural implementation of 
perception and learning in the brain, and their computational models.  Alongside, we will 
critically evaluate the state-of-the-art in these domains and explore alternative approaches 
to the same issues.  Next, we will learn the probabilistic view on vision, and how it 
changes the research questions in focus.  We will investigate how interpreting sensory 
perception, cue-combination, statistical learning, and rule learning in the framework of 
probabilistic inference can expand the range of interpretable phenomena in vision and 
cognition.  We will also cover theories of possible neural embodiment of such 
computations in the brain, and review evidence that supports such an implementation. 
Completion of this course will provide a self-contained theory of cognitive processes and 
their implementation in the brain. 
 
Learning Outcomes 

§ Getting acquainted with vision research and its links to higher cognition 
§ Understanding the link between perception and learning 
§ Exploring the probabilistic interpretation of vision and cognitive functions 
§ Tying abstract computational and behavioral results to neural implementation of 

visual coding 
§ Gaining experience in how to read and present various scientific materials  

 
Course Requirements 
The course grading is based on the following three components.  
§ Each student will have to make a number of presentations based on the assigned 

readings during the semester. Making a presentation involves reading the assigned 
papers, if necessary reading additional material, preparing a brief summary slide 
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presentation of the topic, and leading the discussion during class.  Performance will 
be evaluated based on how well the student understood and presented the essence (!) 
of the topic rather than getting lost in details, how well s/he could keep the 
presentation conscience and within proper time frame instead of repeating back the 
entire content of the paper, and how well s/he integrates the given topic with the 
previous topics discussed in class.  The slide presentations will be collected and used 
in the final evaluation. 

§ In addition, each student needs to read each assigned paper for each class (before the 
class!).  While this does not have to be a deep thorough reading (although that is the 
best), it must be sufficient to be familiar with the topic covered in the paper.  Having 
said that, reading of the course material is essential component of the course, and 
keeping up with the readings will be expected.  To facilitate this, each student has to 
submit (before the class by E-learning Dropbox) and also bring to class a copy of a 
one-page summary sheet.  On this sheet, for each paper, 4 items should be presented 
in an itemized manner: a) one-two sentences about the gist of the paper, b) a single 
idea/result/methodological trick that was the most interesting, c) the list of topics, 
notions, equations that the student did not understand or did not agree with, d) at least 
one question that s/he wants to clarify based on the study that defines the next step in 
the research.  During the class the student will present his/her summary and the 
question, which will be discussed in class. Students will be required to reach and 
present an answer to the question by the end of the class. When the student is one of 
the presenters in the class, s/he is still required to present a summary sheet of the 
other papers, but s/he does not need to come up with a presentable question. 

§ Participation in class sessions. This is a small, seminar-style course with the goal of 
integrating several topics.  It is essential that the class formed a coherent view on the 
covered topics by the end of the semester.  To achieve this, I expect a highly 
interactive and critical discussing during classes. 

 
Required Materials: 
§ PDFs of the reading will be provided. 

COURSE SCHEDULE 
Date  Topic 
Sept. 13 0  Introduction: Why studying visual perception and learning in the brain? 
Sept. 20 1  Classical neural results visual perception and learning 
Sept. 27 2  Classical behavioral results of visual perception and learning 
Oct. 4  3  Classical computational models of visual perception and cognitive learning 
Oct. 11 4  The role of statistics 
Oct. 18 5  Statistical learning  
Oct. 25  6  Rule learning 
Nov. 1 7  The probabilistic framework 
Nov. 8 8  Applying the probabilistic framework to perception and learning 
Nov. 15 9  Probabilistic interpretation of illusions and cue combination 
Nov. 22 10 Evidence for probabilistic processes in infants 
Nov. 29 11 Spontaneous activity in the cortex 
Dec. 6 12 Probabilistic theory of perception and learning and its neural evidence 
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TOPICS: 
 
0) Intro:  Why learning visual perception and learning in the brain?  
 
1) Classical neural results of visual perception and learning 
Frisby, J.P. & Stone. J. V. (2010). Chapter 3: Seeing with receptive fields 55-74 
Frisby, J.P. & Stone. J. V. (2010). Chapter 10: Seeing with brain maps 229-254  
DiCarlo, J.J., Zoccolan, D., and Rust, N.C. (2012). How Does the Brain Solve Visual 

Object Recognition? Neuron 73, 415-434. 
Miller, K. D., Erwin, E., & Kayser, A. (1999). Is the development of orientation 

selectivity instructed by activity? Journal of Neurobiology, 41(1), 44-57 
 
 
2) Classical behavioral results of visual perception and learning 
Frisby, J.P. & Stone. J. V. (2010). Chapter 4: Seeing aftereffects: the psychologist’s 

microelectrode 75-110 
Frisby, J.P. & Stone. J. V. (2010). Chapter 8: Seeing objects 173-204 
Fine, I., and Jacobs, R.A. (2002). Comparing perceptual learning across tasks: A 

review. Journal of Vision 2, 190-203. 
 
 
3) Classical computational models of visual perception and cognitive learning 
Frisby, J.P. & Stone. J. V. (2010). Chapter 11: Seeing and complexity theory 255-280 
Frisby, J.P. & Stone. J. V. (2010). Chapter 12: Seeing and psychophysics 280-306 
Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for 

rapid categorization. Proceedings of the National Academy of Science, 104(15), 
6424-6429  

McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing 
approach to semantic cognition. Nature Reviews Neuroscience, 4(4), 310-322 

 
 
4) The role of statistics 
Barlow, H. B. (2001). Redundancy reduction revisited. Network: Computation in 

Neural Systems, 12, 241-253. 
Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural 

representation. Annual Review of Neuroscience, 24, 1193-1216 
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field 

properties by learning a sparse code for natural images. Nature, 381, 607-609. 
Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in Visual Working 

Memory: Using Statistical Regularities to Form More Efficient Memory 
Representations. Journal of Experimental Psychology-General, 138(4), 487-502 

 
 
5) Statistical learning  
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Nicolas Turk-Brown. (2012). Statistical learning and its consequences. in  M. D. 
Dodds, J. H. Flowers (eds.) The influence of attentions, learning and motivation 
on vision research Nebraska Symposium on Motivation Springer, NY  117-146. 

Fiser, J., and Aslin, R.N. (2002). Statistical learning of new visual feature 
combinations by infants. Proceedings of the National Academy of Sciences of the 
United States of America 99, 15822-15826. 

Fiser, J., and Aslin, R.N. (2005). Encoding multielement scenes: Statistical learning 
of visual feature hierarchies. Journal of Experimental Psychology-General 134, 
521-537 

 
 
6) Rule learning  
Marcus, G.F., Vijayan, S., Bandi Rao, S., and Vishton, P.M. (1999). Rule-learning by 

seven-month-old infants. Science 283, 77-80. 
Pena, M., Bonatti, L.L., Nespor, M., and Mehler, J. (2002). Signal-driven 

computations in speech processing. Science 298, 604-607. 
Saffran, J.R., Pollak, S.D., Seibel, R.L., and Shkolnik, A. (2007). Dog is a dog is a 

dog: Infant rule learning is not specific to language. Cognition 105, 669-680 
MacKenzie, K. J. and Fiser, J. (2012). The relationship between statistical learning 

and rule learning in vision Cognition (under revision)  
 
 
7) The probabilistic framework  
Jacobs R. A., and Kruschke, J.K. (2011). Bayesian learning theory applied to human 

cognition  Wiley Interdisciplinary Reviews in Cognitive Science,  8-21 
Knill, D. C., Kersten, D., & Yuille, A., (1996) A Bayesian formulation of visual 

perception, in (Knill, D. C. and Richards, W., eds.) Perception as Bayesian 
Inference, Cambridge University Press. Cambridge, England. 1-21 

Tenenbaum, J.B., Kemp, C., Griffiths, T.L., and Goodman, N.D. (2011). How to 
Grow a Mind: Statistics, Structure, and Abstraction. Science 331, 1279-1285 

 
 
8) Applying the probabilistic framework to perception and learning 
Kording, K.P., and Wolpert, D.M. (2004). Bayesian integration in sensorimotor 
learning. Nature 427, 244-247 
Orbán, G., Fiser, J., Aslin, R.A., and Lengyel, M. (2008). Bayesian learning of visual 

chunks by human observers. Proceedings of the National Academy of Science 
105, 2745-2750 

Kemp, C., and Tenenbaum, J.B. (2008). The discovery of structural form. 
Proceedings of the National Academy of Sciences of the United States of America 
105, 10687-10692. 

 
9) Probabilistic interpretation of illusions and cue combination  
Weiss, Y., Simoncelli, E.P., and Adelson, E.H. (2002). Motion illusions as optimal 

percepts. Nature Neuroscience 5, 598-604. 
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Atkins, J.E., Fiser, J., and Jacobs, R.A. (2001). Experience-dependent visual cue 
integration based on consistencies between visual and haptic percepts. Vision 
Research 41, 449-461 

Series, P. and Seitz, A. R. (2013). Learning what to expect (in visual perception) 
Frontiers in Human Neuroscience 7, 1-14 doi: 10.3389/fnhum.2013.00668  

 
 
10) Evidence for probabilistic processes in infants   
Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T., and Danks, D. 

(2004). A theory of causal learning in children: Causal maps and Bayes nets. 
Psychological Review 111, 3-32 

Xu, F., and Garcia, V. (2008). Intuitive statistics by 8-month-old infants. Proceedings 
of the National Academy of Sciences of the United States of America 105, 5012-
5015. 

Teglas, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum, J.B., and Bonatti, L.L. 
(2011). Pure Reasoning in 12-Month-Old Infants as Probabilistic Inference. 
Science 332, 1054-1059. 

  
 
11) Spontaneous activity in the cortex  
Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003). 

Spontaneously emerging cortical representations of visual attributes. Nature 425, 
954-956 

Fiser, J., Chiu, C.Y., and Weliky, M. (2004). Small modulation of ongoing cortical 
dynamics by sensory input during natural vision. Nature 431, 573-578. 

Buckner, R.L., Andrews-Hanna, J.R., and Schacter, D.L. (2008). The brain's default 
network - Anatomy, function, and relevance to disease. In Year in Cognitive 
Neuroscience 2008, Volume 1124. pp. 1-38 

 
 
12) Probabilistic theory of perception and learning and its neural evidence 
Fiser, J., Berkes, P., Orban, G., and Lengyel, M. (2010). Statistically optimal 

perception and learning: from behavior to neural representations. Trends in 
Cognitive Sciences 14, 119-130. 

Fiser, J. and Lengyel, G. (2022) Statistical learning in vision.  Annual Review of 
Vision Science 8 

Berkes, P., Orban, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical activity 
reveals hallmarks of an optimal internal model of the environment. Science 331. 

 


